In order to meet the edge services placement demand for multiobjective optimization of Power Internet of Things, an edge services placement strategy based on an improved strength Pareto evolutionary algorithm (SPEA2) is proposed in this paper. Firstly, we model the delay, resource utilization, and energy consumption. Then, a multiobjective optimization is proposed. Finally, an enhanced genetic algorithm is used to derive the decision candidate set. Moreover, the optimal solution in the candidate set is selected to be utilized in the iteration of the multicriteria decision and the superior-inferior solution distance method. Numerical results and analysis show that the proposed strategy is more effective in reducing system delay, improving resource utilization, and saving energy consumption than the other two benchmark algorithms.
In mobile crowd sensing (MCS), the cloud as a single sensing platform undertakes a large number of communication tasks, leading to the reduction of sensing task execution efficiency and the risk of loss and leakage of users’ private data. In this paper, we propose a spatial ciphertext aggregation scheme with collaborative verification of fog nodes. Firstly, the cloud and fog collaboration architecture is constructed. Fog nodes are introduced for data validation and slices transmission, reducing computing cost on the sensing platform. Secondly, a multipath transmission method of slice data is proposed, in which the user identity and data are transmitted anonymously by the secret sharing method, and the data integrity is guaranteed by hash chain authentication. Finally, a spatial data aggregation method based on privacy protection is presented. The ciphertext aggregation calculation of the sensing platform is realized through Paillier homomorphic encryption, and the problem of insufficient data coverage in the sensing region is solved by the position-based weight interpolation method. The security analysis demonstrates that the scheme can achieve the expected security goal. The simulation results show the feasibility and effectiveness of the proposed scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.