Kidney fibrosis is the final common pathway of progressive kidney diseases, the underlying mechanisms of which is not fully understood. The purpose of the current study is to investigate a role of Piezo1, a mechanosensitive nonselective cation channel, in kidney fibrosis. In human fibrotic kidneys, Piezo1 protein expression was markedly upregulated. The abundance of Piezo1 protein in kidneys of mice with UUO or with folic-acid treatment was significantly increased. Inhibition of Piezo1 with GsMTx4 markedly ameliorated UUO or folic acid-induced kidney fibrosis. Mechanical stretch, compression or stiffness induced Piezo1 activation and pro-fibrotic responses in human HK2 cells and primary cultured mouse proximal tubular cells (mPTCs), which were greatly prevented by inhibition or silence of Piezo1. TGFβ-1 induced increased Piezo1 expression and pro-fibrotic phenotypic alterations in HK2 cells and mPTCs, which was again markedly prevented by inhibition of Piezo1. Activation of Piezo1 by Yoda1, a Piezo1 agonist, caused calcium influx and profibrotic responses in HK2 cells and induced calpain2 activation, followed by talin1 cleavage and upregulation of integrinβ1. Also, Yoda1 promoted the link between ECM and integrinβ1. In conclusion, Piezo1 is involved in the progression of kidney fibrosis and pro-fibrotic alterations in renal proximal tubular cells, likely through activating calcium-calpain2-integrinβ1 pathway.
Background The bile acid-activated receptors, including the membrane G protein-coupled receptor TGR5 and nuclear farnesoid X receptor (FXR), have roles in kidney diseases. In this study, we investigated the role of TGR5 in renal water handling and the underlying molecular mechanisms. MethodsWe used tubule suspensions of inner medullary collecting duct (IMCD) cells from rat kidneys to investigate the effect of TGR5 signaling on aquaporin-2 (AQP2) expression, and examined the in vivo effects of TGR5 in mice with lithium-induced nephrogenic diabetes insipidus (NDI) and Tgr5 knockout (Tgr5 2/2 ) mice.Results Activation of TGR5 by lithocholic acid (LCA), an endogenous TGR5 ligand, or INT-777, a synthetic TGR5specific agonist, induced AQP2 expression and intracellular trafficking in rat IMCD cells via a cAMP-protein kinase A signaling pathway. In mice with NDI, dietary supplementation with LCA markedly decreased urine output and increased urine osmolality, which was associated with significantly upregulated AQP2 expression in the kidney inner medulla. Supplementation with endogenous FXR agonist had no effect. In primary IMCD suspensions from lithium-treated rats, treatment with INT-767 (FXR and TGR5 dual agonist) or INT-777, but not INT-747 (FXR agonist), increased AQP2 expression. Tgr5 2/2 mice exhibited an attenuated ability to concentrate urine in response to dehydration, which was associated with decreased AQP2 expression in the kidney inner medulla. In lithium-treated Tgr5 2/2 mice, LCA treatment failed to prevent reduction of AQP2 expression.Conclusions TGR5 stimulation increases renal AQP2 expression and improves impaired urinary concentration in lithium-induced NDI. TGR5 is thus involved in regulating water metabolism in the kidney.
Background: Chronic kidney diseases (CKD) are usually associated with dyslipidemia. Statin therapy has been primarily recommended for the prevention of cardiovascular risk in patients with CKD; however, the effects of statins on kidney disease progression remain controversial. This study aims to investigate the effects of statin treatment on renal handling of water in patients and in animals on a high-fat diet. Methods: Retrospective cohort patient data were reviewed and the protein expression levels of aquaporin-2 (AQP2) and NLRP3 inflammasome adaptor ASC were examined in kidney biopsy specimens. The effects of statins on AQP2 and NLRP3 inflammasome components were examined in nlrp3 -/- mice, 5/6 nephroectomized (5/6Nx) rats with a high-fat diet (HFD), and in vitro . Results: In the retrospective cohort study, serum cholesterol was negatively correlated to eGFR and AQP2 protein expression in the kidney biopsy specimens. Statins exhibited no effect on eGFR but abolished the negative correlation between cholesterol and AQP2 expression. Whilst nlrp3 +/+ mice showed an increased urine output and a decreased expression of AQP2 protein after a HFD, which was moderately attenuated in nlrp3 deletion mice with HFD. In 5/6Nx rats on a HFD, atorvastatin markedly decreased the urine output and upregulated the protein expression of AQP2. Cholesterol stimulated the protein expression of NLRP3 inflammasome components ASC, caspase-1 and IL-1β, and decreased AQP2 protein abundance in vitro , which was markedly prevented by statins, likely through the enhancement of ASC speck degradation via autophagy. Conclusion: Serum cholesterol level has a negative correlation with AQP2 protein expression in the kidney biopsy specimens of patients. Statins can ameliorate cholesterol-induced inflammation by promoting the degradation of ASC speck, and improve the expression of aquaporin in the kidneys of animals on a HFD.
Vascular calcification is a highly regulated biological process similar to bone formation involving osteogenic differentiation of vascular smooth muscle cells (VSMCs). Hyaluronan (HA), a major structural component of the extracellular matrix in cartilage, has been shown to inhibit osteoblast differentiation. However, whether HA affects osteogenic differentiation and calcification of VSMCs remains unclear. In the present study, we used in vitro and ex vivo models of vascular calcification to investigate the role of HA in vascular calcification. Both high and low molecular weight HA treatment significantly reduced calcification of rat VSMCs in a dose-dependent manner, as detected by alizarin red staining and calcium content assay. Ex vivo study further confirmed the inhibitory effect of HA on vascular calcification. Similarly, HA treatment decreased ALP activity and expression of bone-related molecules including Runx2, BMP2 and Msx2. By contrast, inhibition of HA synthesis by 4-methylumbelliferone (4MU) promoted calcification of rat VSMCs. In addition, adenovirus-mediated overexpression of HA synthase 2 (HAS2), a major HA synthase in VSMCs, also inhibited calcification of VSMCs, whereas CRISPR/Cas9-mediated HAS2 knockout promoted calcification of rat A10 cells. Furthermore, we found that BMP2 signaling was inhibited in VSMCs after HA treatment. Recombinant BMP2 enhanced high calcium and phosphate-induced VSMC calcification, which can be blocked by HA treatment. Taken together, these findings suggest that HA inhibits vascular calcification involving BMP2 signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.