Background Reactive Oxygen Species (ROS) serve signaling functions in the vasculature, and hypoxia has been associated with increased ROS production. NADPH oxidase 4 (Nox4) is an ROS-producing enzyme that is highly expressed in the endothelium, yet its specific role is unknown. We sought to determine the role of Nox4 in the endothelial response to hypoxia. Methods and Results Hypoxia induced Nox4 expression both in vitro and in vivo and overexpression of Nox4 was sufficient to promote endothelial proliferation, migration, and tube formation. To determine the in vivo relevance of our observations, we generated transgenic mice with endothelial-specific Nox4 overexpression using the VE-cadherin promoter (VECad-Nox4 mice). In vivo, the VECad-Nox4 mice had accelerated recovery from hind limb ischemia and enhanced aortic capillary sprouting. Because endothelial nitric oxide synthase (eNOS) is involved in endothelial angiogenic responses and eNOS is activated by ROS, we probed the effect of Nox4 on eNOS. In cultured ECs overexpressing Nox4 we observed a significant increase in eNOS protein expression and activity. To causally address the link between eNOS and Nox4 we crossed our transgenic Nox4 mice with eNOS-/- mice. Aorta from these mice did not demonstrate enhanced aortic sprouting and VECad-Nox4 mice on the eNOS-/- background did not demonstrate enhanced recovery from hind limb ischemia. Conclusions Collectively, we demonstrate that augmented endothelial Nox4 expression promotes angiogenesis and recovery from hypoxia in an eNOS-dependent manner.
Vascular reactive oxygen species (ROS) are known to be involved in atherosclerosis development and progression. NADPH oxidase 4 (Nox4) is a constitutively active ROS-producing enzyme that is highly expressed in the vascular endothelium. Nox4 is unique in its biology and has been implicated in vascular repair, however, the role of Nox4 in atherosclerosis is unknown. Therefore, to determine the effect of endothelial Nox4 on development of atherosclerosis, Apoe E−/− mice +/− endothelial Nox4 (ApoE−/−+EC Nox4) were fed a high cholesterol/high fat (Western) diet for 24 weeks. Significantly fewer atherosclerotic lesions were observed in the ApoE−/− + EC Nox4 mice as compared to the ApoE−/− littermates, which was most striking in the abdominal region of the aorta. In addition, markers of T cell populations were markedly different between the groups; T regulatory cell marker (FoxP3) was increased whereas T effector cell marker (T-bet) was decreased in aorta from ApoE−/− + EC Nox4 mice compared to ApoE−/− alone. We also observed decreased monokine induced by gamma interferon (MIG; CXCL9), a cytokine known to recruit and activate T cells, in plasma and tissue from ApoE−/− + EC Nox4 mice. To further investigate the link between endothelial Nox4 and MIG expression, we utilized cultured endothelial cells from our EC Nox4 transgenic mice and human cells with adenoviral overexpression of Nox4. In these cultured cells, upregulation of Nox4 attenuated endothelial cell MIG expression in response to interferon-gamma. Together these data suggest that endothelial Nox4 expression reduces MIG production and promotes a T cell distribution that favors repair over inflammation, leading to protection from atherosclerosis.
Endothelial dysfunction is a characteristic of many vascular related diseases such as hypertension. Peroxisome proliferator activated receptor gamma, coactivator 1α (PGC-1α) is a unique stress sensor that largely acts to promote adaptive responses. Therefore, we sought to define the role of endothelial PGC-1α in vascular function using mice with endothelial specific loss of function (PGC-1α EC KO) and endothelial specific gain of function (PGC-1α EC TG). Here we report that endothelial PGC-1α is suppressed in angiotensin-II (ATII)-induced hypertension. Deletion of endothelial PGC-1α sensitized mice to endothelial dysfunction and hypertension in response to ATII, whereas PGC-1α EC TG mice were protected. Mechanistically, PGC-1α promotes eNOS expression and activity, which is necessary for protection from ATII-induced dysfunction as mice either treated with an eNOS inhibitor (LNAME) or lacking eNOS were no longer responsive to transgenic endothelial PGC-1α expression. Finally, we determined that the orphan nuclear receptor, estrogen related receptor α (ERRα) is required to coordinate the PGC-1α -induced eNOS expression. In conclusion, endothelial PGC-1α expression protects from vascular dysfunction by promoting NO• bioactivity through ERRα induced expression of eNOS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.