Common Midpoint (CMP) and Common Re ection Surface (CRS) are widely used methods for improving the signal-to-noise ratio in the eld of seismic processing. ese methods are computationally intensive and require high performance computing. is paper optimizes these methods on the Sunway many-core architecture and implements large-scale seismic processing on the Sunway Taihulight supercomputer. We propose the following three optimization techniques: 1) we propose a so ware cache method to reduce the overhead of memory accesses, and share data among CPEs via the register communication; 2) we re-design the semblance calculation procedure to further reduce the overhead of memory accesses; 3) we propose a vectorization method to improve the performance when processing the small volume of data within short loops. e experimental results show that our implementations of CMP and CRS methods on Sunway achieve 3.50× and 3.01× speedup on average compared to the-state-of-the-art implementations on CPU. In addition, our implementation is capable to run on more than one million cores of Sunway TaihuLight with good scalability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.