According to BESO’s principle of binarizing continuous design variables and the excellent performance of the standard HPO algorithm in terms of solving continuous optimization problems, a discrete binary Hunter-prey optimization algorithm is introduced to construct an efficient topology optimization model. It was used to solve the problems that the BESO method of topology optimization has, such as easily falling into the local optimal value and being unable to obtain the optimal topology configuration; the metaheuristic algorithm was able to solve the topology optimization model’s low computational efficiency and could easily produce intermediate elements and unclear boundaries. Firstly, the BHPO algorithm was constructed by discrete binary processing using the s-shape transformation function. Secondly, BHPO-BESO topology optimization theory was established by combining the BHPO algorithm with BESO topology optimization. Using the sensitivity information of the objective function and the updated principle of the meta-heuristic of the BHPO algorithm, a semi-random search for the optimal topology configuration was carried out. Finally, numerical simulation experiments were conducted by using the three typical examples of the cantilever beam, simply supported beam, and clamping beam as optimization objects and the results were compared with the solution results of BESO topology optimization. The experimental results showed that compared with BESO, BHPO-BESO could find the optimal topology configuration with lower compliance and maximum stiffness, and it has higher computational efficiency, which can solve the above problems.
In order to solve the problem of predicting the residual life of mechanical products accurately based on small-sample data, this paper proposes a small-sample adaptive residual life prediction model of mechanical products based on feature matching preprocessor-LSTM. First, aiming at the problem of low accuracy of remaining life prediction for small samples of mechanical products caused by multiple time scales and multiple fault states, the failure time data and performance degradation data are fused, and the failure rate and standard deviation are used as the remaining life prediction criteria to intuitively reflect The possibility of failure of a component or system at a certain point in time. Considering the demand of adaptive small-sample residual life prediction data, this paper establishes the adaptive matching pre-processor model of life characteristics. On this basis, the LSTM neural network is used to establish a small-sample adaptive residual life prediction model. Then, the XJTU-SY bearing life data set and the test data of the small-sample life characteristics measured by the RV reducer are used as the research objects, and a small amount of the data set is randomly selected. The remaining life expectancy is predicted from the sample data and compared with its standard remaining life, respectively. The comparison results show that the overall prediction error is small. This study shows that the remaining life prediction model established can better predict the remaining life of mechanical product sub-sample data and provides a feasible method for predicting the remaining life of mechanical product sub-samples.
<abstract> <p>In order to overcome the low accuracy of traditional Extreme Learning Machine (ELM) network in the performance evaluation of Rotate Vector (RV) reducer, a pattern recognition model of ELM based on Ensemble Empirical Mode Decomposition (EEMD) fusion and Improved artificial Jellyfish Search (IJS) algorithm was proposed for RV reducer fault diagnosis. Firstly, it is theoretically proved that the torque transmission of RV reducer has periodicity during normal operation. The characteristics of data periodicity can be effectively reflected by using the test signal periodicity characteristics of rotating machinery and EEMD. Secondly, the Logistic chaotic mapping of population initialization in JS algorithm is replaced by tent mapping. At the same time, the competition mechanism is introduced to form a new IJS. The simulation results of standard test function show that the new algorithm has the characteristics of faster convergence and higher accuracy. The new algorithm was used to optimize the input layer weight of the ELM, and the pattern recognition model of IJS-ELM was established. The model performance was tested by XJTU-SY bearing experimental data set of Xi'an Jiaotong University. The results show that the new model is superior to JS-ELM and ELM in multi-classification performance. Finally, the new model is applied to the fault diagnosis of RV reducer. The results show that the proposed EEMD-IJS-ELM fault diagnosis model has higher accuracy and stability than other models.</p> </abstract>
The shuffled frog leaping algorithm (SFLA) is a promising metaheuristic bionics algorithm, which has been designed by the shuffled complex evolution (SCE) and the particle swarm optimization (PSO) framework. But it is easily trapped into local optimum and has the low optimization accuracy when it is used to optimize the complex engineering problems. To overcome the short-comings, a novel modified shuffled frog leaping algorithm (MSFLA) with inertia weight is proposed in this paper. To extend the scope of the direction and length of the updated worst frog (vector) of the original SFLA, the inertia weight α was introduced and its meaning and range of the new parameters are fully explained. Then the convergence of the MSFLA is deeply analyzed and proved theoretically by a new dynamic equation formed by Z-transform. Finally, we have compared the solution of 7 benchmark function with the original SFLA, other improved SFLAs, genetic algorithm (GA), PSO, artificial bee colony (ABC) algorithm, and the grasshopper optimization algorithm with invasive weed optimization (IWGOA). The testing results showed that the modified algorithms can effectively improve the solution accuracies and convergence properties, exhibited an excellent ability of global optimization in high-dimensional space and complex function problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.