The complexity and multivariate analysis of biological systems and environment are the drawbacks of the current high-throughput sensing method and multianalyte identification. Deep learning (DL) algorithms contribute a big advantage in analyzing the nonlinear and multidimensional data. However, most DL models are datadriven black boxes suffering from nontransparent inner workings. In this work, we developed an explainable DL-assisted visualized fluorometric array-based sensing method. Based on a data set of 8496 fluorometric images of various target molecule fingerprint patterns, two typical DL algorithms and eight machine learning algorithms were investigated for the efficient qualitative and quantitative analysis of six aminoglycoside antibiotics (AGs). The convolutional neural network (CNN) approached 100% prediction accuracy and 1.34 ppm limit of detection of six AG analysis in domestic, industrial, medical, consumption, or aquaculture water. The class activation mapping assessment explicates how the CNN model assesses the importance of sensor elements and makes the discrimination decision. The feedback mechanism guides the sensor array evolution for less material using a simplified operation or efficient data acquisition. The explainable DL-assisted analysis method establishes an "end-to-end" strategy to resolve the black box of the DL algorithm, promote hardware design or principle optimization, and contribute facile indicators for environment monitoring, disease diagnosis, and even new scientific discovery.
Organic compounds that contain poly-triazole are very important intermediates in pharmaceutical and chemical industry. Click chemistry is one of essential reactions that can form C-N bond with high atom economy. The research progress in metals catalyzed Click chemistry of azides and alkynes from the perspective of reaction mechanism is categorized and summarized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.