Mycotoxin contamination causes disease and death in both humans and animals. Monascus Red, produced by Monascus purpureus, is used as a food colorant. However, its application is limited by contamination of the nephrotoxin citrinin, which is also produced by the fungus. Suppressing citrinin production by genetic engineering is difficult in a polykaryotic fungus such as M. purpureus. Hence, we developed a CRISPR/Cas system to delete large genomic fragments in polykaryotic fungi. Protoplast preparation and regeneration were optimized, and a dual-plasmid CRISPR/Cas system was designed to enable the deletion of the 15-kb citrinin biosynthetic gene cluster in M. purpureus industrial strain KL-001. The obtained homokaryotic mutants were stable, and citrinin was unambiguously eliminated. Moreover, the Monascus Red pigment production was increased by 2−5%. Our approach provides a powerful solution to solve this long-standing problem in the food industry and enables engineering of polykaryotic fungi for mycotoxin eliminations.
A dedicated enzyme for the formation of the central C ring in the tetracyclic ergoline of clinically important ergot alkaloids has never been found. Herein, we report a dual role catalase (EasC), unexpectedly using O 2 as the oxidant, that catalyzes the oxidative cyclization of the central C ring from a 1,3-diene intermediate. Our study showcases how nature evolves the common catalase for enantioselective C−C bond construction of complex polycyclic scaffolds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.