In oil reservoirs, if oil mainly has wettability in the solid phase, such as in carbonate reservoirs, the medium is oil-wetted. For oil-wetted porous media containing an oil and water two-phase flow, there are electric double layers at both the oil–solid interface and the oil–water interface, which can stimulate the seismoelectric effect. To date, most of the studies on the seismoelectric effects of porous media have mainly focused on water-wetted porous media, however, there are few reported studies on cases of oil-wetted porous media, especially on oil-wetted porous media containing an oil–water two-phase flow. In this paper, we adopted the oil-wetted pore model, in which oil and water are assumed to be immiscible, and each phase is continuous and distributed in parallel. We also considered the influence of the electric double layer at both the oil–solid interface and the oil–water interface on the seismoelectric effect. It was concluded that the seismoelectric effect of oil-wetted porous media containing a two-phase flow is mainly caused by the electric double layer at the oil–water interface, while the effect of the electric double layer at the oil–solid interface can be ignored. We regarded the two-phase flow as an equivalent fluid, and then we derived a governing equation of the seismoelectric effect and proposed the flux-averaging method to derive the electrokinetic coupling coefficients under the excitation of a steady acoustic field and a time-harmonic acoustic field. We also investigated the effects of formation parameters, namely, water saturation, pore size, water viscosity and porosity, on the seismoelectric effect, which can provide a theoretical reference for the study of seismoelectric logging in oil-wetted porous formations containing a two-phase flow.
The seismoelectric effect of porous media is the main basis for seismoelectric logging. At present, most of the studies on the seismoelectric effect in unsaturated porous media adopt the model of pores with continuous distribution of gas and liquid. There is a lack of theoretical research on the micro mechanism of the seismoelectric effect of unsaturated porous media with discrete gas phase, and the existing studies do not consider the effect of the electric double layer at the gas–liquid interface on the seismoelectric effect. Based on the capillary model, this work adopted the gas phase discrete model, combined the electric double layer theory and the seepage principle, considered the effect of electric double layer at the pore wall and the gas–liquid interface, and studied the micro principle of the seismoelectric effect of unsaturated porous media. Firstly, we studied the variation of gas–water two-phase flow pattern with saturation in unsaturated pores, then proposed the equivalent principle of series circuits, deduced the effective streaming current and conductance of a pore containing multiple bubbles, and then deduced the streaming potential coupling coefficient in the unsaturated pores. We also studied the effect of pore parameters such as saturation, pore size, bubble spacing, pore fluid viscosity, and salinity on the streaming potential coupling coefficient. The results show that the streaming potential coupling coefficient first increases and then decreases with the decrease in saturation, which is the same as the trend measured in Allègre’s experiment, and provide a theoretical explanation for the non-monotonic change in the coupling coefficient with saturation in unsaturated porous media.
The seismoelectric effect is the fundamental basis for seismoelectric logging. Most of the existing theories for the seismoelectric effect are based on the Pride theory, which adopts the assumption of a thin electric double layer and uses the volume-averaging method to derive the seismoelectric coupling equations; hence, the obtained electrokinetic coupling coefficient is not applicable to large-Debye-length cases. In addition, the Pride theory neglects the change in seepage velocity with the radial position of the pore when calculating the streaming current, which leads to an inaccurate reflection of the influence of pore size on the electrokinetic coupling coefficient. In this study, we proposed a flux-averaging method to solve the effective net residual charge density of porous media and further derived the electrokinetic coupling coefficient expressed by the effective net residual charge density. We also investigated the effect of formation parameters and compared the results with those calculated using the Pride theory. Since the proposed method is not limited by the thin electric double layer assumption, it is suitable for both small- and large-Debye-length cases. Moreover, we also carried out flume experiments to investigate the influence of salinity, where both thin and thick electric double layer cases were studied. The comparison between the results of the experiment and simulation verified the correctness of the proposed method. Furthermore, the proposed method took into account the variation in seepage velocity with pore location when solving for the streaming current; therefore, the influence of the pore size on the electrokinetic coefficient can be described more accurately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.