Two-dimensional transition-metal carbide materials (termed MXene) have attracted huge attention in the field of electrochemical energy storage due to their excellent electrical conductivity, high volumetric capacity, etc. Herein, with inspiration from the interesting structure of pillared interlayered clays, we attempt to fabricate pillared TiC MXene (CTAB-Sn(IV)@TiC) via a facile liquid-phase cetyltrimethylammonium bromide (CTAB) prepillaring and Sn pillaring method. The interlayer spacing of TiC MXene can be controlled according to the size of the intercalated prepillaring agent (cationic surfactant) and can reach 2.708 nm with 177% increase compared with the original spacing of 0.977 nm, which is currently the maximum value according to our knowledge. Because of the pillar effect, the assembled LIC exhibits a superior energy density of 239.50 Wh kg based on the weight of CTAB-Sn(IV)@TiC even under higher power density of 10.8 kW kg. When CTAB-Sn(IV)@TiC anode couples with commercial AC cathode, LIC reveals higher energy density and power density compared with conventional MXene materials.
Lithium-sulfur batteries show fascinating potential for advanced energy storage systems due to their high specific capacity, low-cost, and environmental benignity. However, the shuttle effect and the uncontrollable deposition of lithium sulfide species result in poor cycling performance and low Coulombic efficiency. Despite the recent success in trapping soluble polysulfides via porous matrix and chemical binding, the important mechanism of such controllable deposition of sulfur species has not been well understood. Herein, we discovered that conductive Magnéli phase Ti4O7 is highly effective matrix to bind with sulfur species. Compared with the TiO2-S, the Ti4O7-S cathodes exhibit higher reversible capacity and improved cycling performance. It delivers high specific capacities at various C-rates (1342, 1044, and 623 mAh g(-1) at 0.02, 0.1, and 0.5 C, respectively) and remarkable capacity retention of 99% (100 cycles at 0.1 C). The superior properties of Ti4O7-S are attributed to the strong adsorption of sulfur species on the low-coordinated Ti sites of Ti4O7 as revealed by density functional theory calculations and confirmed through experimental characterizations. Our study demonstrates the importance of surface coordination environment for strongly influencing the S-species binding. These findings can be also applicable to numerous other metal oxide materials.
Two-dimensional transition metal carbide materials called MXenes show potential application for energy storage due to their remarkable electrical conductivity and low Li(+) diffusion barrier. However, the lower capacity of MXene anodes limits their further application in lithium-ion batteries. Herein, with inspiration from the unique metal ion uptake behavior of highly conductive Ti3C2 MXene, we overcome this impediment by fabricating Sn(4+) ion decorated Ti3C2 nanocomposites (PVP-Sn(IV)@Ti3C2) via a facile polyvinylpyrrolidone (PVP)-assisted liquid-phase immersion process. An amorphous Sn(IV) nanocomplex, about 6-7 nm in lateral size, has been homogeneously anchored on the surface of alk-Ti3C2 matrix by ion-exchange and electrostatic interactions. In addition, XRD and TEM results demonstrate the successful insertion of Sn(4+) into the interlamination of an alkalization-intercalated Ti3C2 (alk-Ti3C2) matrix. Due to the possible "pillar effect" of Sn between layers of alk-Ti3C2 and the synergistic effect between the alk-Ti3C2 matrix and Sn, the nanocomposites exhibit a superior reversible volumetric capacity of 1375 mAh cm(-3) (635 mAh g(-1)) at 216.5 mA cm(-3) (100 mA g(-1)), which is significantly higher than that of a graphite electrode (550 mAh cm(-3)), and show excellent cycling stability after 50 cycles. Even at a high current density of 6495 mA cm(-3) (3 A g(-1)), these nanocomposites retain a stable specific capacity of 504.5 mAh cm(-3) (233 mAh g(-1)). These results demonstrate that PVP-Sn(IV)@Ti3C2 nanocomposites offer fascinating potential for high-performance lithium-ion batteries.
Hollow porous micro/nanostructures with high surface area and shell permeability have attracted tremendous attention. Particularly, the synthesis and structural tailoring of diverse hollow porous materials is regarded as a crucial step toward the realization of high-performance electrode materials, which has several advantages including a large contact area with electrolyte, a superior structural stability, and a short transport path for Li(+) ions. Meanwhile, owing to the inexpensive, abundant, environmentally benign, and renewable biological resources provided by nature, great efforts have been devoted to understand and practice the biotemplating technology, which has been considered as an effective strategy to achieve morphology-controllable materials with structural specialty, complexity, and related unique properties. Herein, we are inspired by the natural microalgae with its special features (easy availability, biological activity, and carbon sources) to develop a green and facile biotemplating method to fabricate monodisperse MnO/C microspheres for lithium-ion batteries. Due to the unique hollow porous structure in which MnO nanoparticles were tightly embedded into a porous carbon matrix and form a penetrative shell, MnO/C microspheres exhibited high reversible specific capacity of 700 mAh g(-1) at 0.1 A g(-1), excellent cycling stability with 94% capacity retention, and enhanced rate performance of 230 mAh g(-1) at 3 A g(-1). This green, sustainable, and economical strategy will extend the scope of biotemplating synthesis for exploring other functional materials in various structure-dependent applications such as catalysis, gas sensing, and energy storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.