Polymerization-induced self-assembly (PISA) via reversible addition−fragmentation chain transfer (RAFT) dispersion polymerization is an effective method to produce block copolymer nano-objects of various morphologies at high solids. However, current PISA formulations have been limited to linear block copolymers. We report the synthesis of AB 2 star block copolymers via RAFT aqueous dispersion polymerization of diacetone acrylamide using a poly(ethylene glycol) methyl ether bearing two chain transfer agents as the difunctional macromolecular chain transfer agent (macro-CTA), which was efficiently synthesized using 2,4,6trichloro-1,3,5-triazine and activated esters to afford a high end functionality (97%). The star polymer architecture can significantly promote morphological transitions to obtain higher-order morphologies at both lower solids and lower degrees of polymerization of the core-forming block in comparison with its linear counterpart. This work demonstrates that polymer architecture is another important parameter that should be considered when conducting PISA synthesis to obtain complex morphologies.
Conductive hydrogels
had demonstrated significant prospect in the
field of wearable devices. However, hydrogels suffer from a huge limitation of freezing when the temperature
falls below zero. Here, a novel conductive organohydrogel was developed
by introducing polyelectrolytes and glycerol into hydrogels. The gel
exhibited excellent elongation, self-healing, and self-adhesive performance
for various materials. Moreover, the gel could withstand a low temperature
of −20 °C for 24 h without freezing and still maintain
good conductivity and self-healing properties. As a result, the sample
could be applied for motion detection and signal transmission. For
example, it can respond to finger movements and transmit network signals
like network cables. Therefore, it was envisioned that the effective
design strategy for conductive organohydrogels with antifreezing,
toughness, self-healing, and self-adhesive properties would provide
wide applications of flexible wearable devices.
Polymerization-induced self-assembly is demonstrated as a powerful platform for the synthesis of block copolymers comprising a semifluorinated liquid-crystalline block. This strategy transforms the deficiency of polymer insolubility encountered in traditional homogeneous solution protocols to the strength for dispersion polymerization, thus, enabling direct access to polymorphic block copolymer nanoobjects at high concentrations and with quantitative conversions. The versatility of this strategy is highlighted by polymerizations in a wide selection of inexpensive solvents, from nonpolar to highly polar, to afford various block copolymers with distinct combinations of amorphous/crystalline or hydrophilic/hydrophobic/fluorinated segments. The utility of the nanoparticles is demonstrated as robust Pickering emulsifiers for commonly considered good solvents.
Block copolymer worm stabilization
via cross-linking during polymerization-induced self-assembly (PISA)
is challenging. This is because block copolymer worms typically occupy
a narrow regime in the phase diagram, and in situ cross-linking may
hinder a morphological transition from sphere to worm. In this work,
in situ cross-linking of block copolymer worms during PISA was studied
using three different asymmetric cross-linkers, each bearing a pair
of double bonds with different reactivities. Specifically, ethanolic
PISA syntheses targeting poly(2-(dimethylamino)ethyl methacrylate)-b-poly(benzyl methacrylate) diblock copolymer worms were
investigated in the presence of vinyl methacrylate, allyl methacrylate,
or 4-allyloxybenzyl methacrylate. The copolymerizations of benzyl
methacrylate with the asymmetric cross-linkers underwent progressive
branching to finally cross-linking of the block copolymer worms. While
all the three asymmetric cross-linkers were able to cross-link worms,
4-allyloxybenzyl methacrylate with a structure mimicking benzyl methacrylate
showed the best results with minimal perturbation to the worm morphology.
Traditional optoelectronic devices without stretchable performance could be limited for substrates with irregular shape. Therefore, it is urgent to explore a new generation of flexible, stretchable, and low-cost intelligent vehicles as visual display and storage devices, such as hydrogels. In the investigation, a novel photochromic hydrogel was developed by introducing the negatively charged ammonium molybdate as a photochromic unit into polyacrylamide via ionic and covalent cross-linking. The hydrogel exhibited excellent properties of low cost, easy preparation, stretchable deformation, fatigue resistance, high transparency, and second-order response to external signals. Moreover, the photochromic and fading process of hydrogels could be precisely controlled and repeated under the irradiation of UV light and exposure of oxygen at different time and temperature. The photochromic hydrogel could be considered applied for artificial intelligence system, wearable healthcare device, and flexible memory device. Therefore, the strategy for designing a soft photochromic material would open a new direction to manufacture flexible and stretchable devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.