Metabolic-associated fatty liver disease (MAFLD) affects approximately a quarter of the global population. Identification of the key genes and pathways involved in hepatic lipid metabolism is of the utmost importance for the diagnosis, treatment, and prevention of MAFLD. In this study, differentially expressed genes were identified through whole-genome transcriptional analysis of liver tissue from MAFLD patients and healthy controls, and a series of lipid metabolism-related molecules and pathways were obtained through pathway analysis. Subsequently, we focused on Iroquois homeobox protein 3 (IRX3), one of 13 transcription factors that were screened from the 331 differentially expressed genes. The transcription factor IRX3 was significantly decreased in the liver tissue of patients with MAFLD when compared with healthy controls. Pearson’s correlation analysis showed that the expression levels of IRX3 in liver tissue were negatively correlated with serum total cholesterol, triglycerides, low-density lipoprotein cholesterol, and uric acid levels. The overexpression and interference of IRX3 induced the increased and decreased lipid droplet accumulation in vitro, respectively. Moreover, interference of IRX3 expression increased mitochondrial fragmentation and reduced the activity of the mitochondrial respiratory chain complex IV. In summary, the study demonstrated that IRX3 regulated hepatic lipid metabolism of MAFLD, and also revealed the effect of IRX3 on mitochondria might be an important mechanism by which IRX3 regulated hepatic lipid metabolism of MAFLD.
Background Non-alcoholic fatty liver disease (NAFLD) is a metabolic disorder with abnormal lipid metabolism. The present study was to identify regulatory genes related to lipid droplets (LDs) abnormal accumulation in NAFLD. Methods transcriptomic analysis and bioinformatics analysis (GEO database) were used to identify potential genes in abnormal lipid metabolism of NAFLD. A candidate gene MAP3K4 expression were detected by immunohistochemistry staining in NAFLD and controls. RNA interference and immunoblotting were used to verify the roles of MAP3K4 in the formation of hepatic LDs. Results A total of 134 candidate genes were screened, including 44 up-regulated genes and 90 down-regulated genes. 29 genes in the protein–protein interaction (PPI) were selected as hub genes, including MAP3K4. The expression levels of MAP3K4 were positively correlated with NAFLD activity score (r = 0.702, p = 0.002). Furthermore, we found a positive correlation of MAP3K4 expression with serum total cholesterol (r = 0.564, p = 0.023), uric acid levels (r = 0.520, p = 0.039), and body mass index (r = 0.574, p = 0.020). Downregulation of MAP3K4 decreased LDs accumulation in HepG2 cells and reduced the expression of CGI-58 and Plin-2 by imbibition of JNK and group IVA cytosolic phospholipase A2 (cPLA2) activation. Conclusion The study revealed a number of regulatory genes related to hepatic lipid metabolism of NAFLD, and demonstrated that MAP3K4 played a pivotal role in the hepatic lipogenesis of NAFLD.
Metabolic associated fatty liver disease (MAFLD) is associated with obesity, type 2 diabetes mellitus, and other metabolic syndromes. Farnesoid X receptor (FXR, NR1H4) plays a prominent role in hepatic lipid metabolism. This study combined the expression of liver genes in FXR knockout (KO) mice and MAFLD patients to identify new pathogenic pathways for MAFLD based on genome-wide transcriptional profiling. In addition, the roles of new target genes in the MAFLD pathogenic pathway were also explored. Two groups of differentially expressed genes were obtained from FXR-KO mice and MAFLD patients by transcriptional analysis of liver tissue samples. The similarities and differences between the two groups of differentially expressed genes were analyzed to identify novel pathogenic pathways and target genes. After the integration analysis of differentially expressed genes, we identified 134 overlapping genes, many of which have been reported to play an important role in lipid metabolism. Our unique analysis method of comparing differential gene expression between FXR-KO mice and patients with MAFLD is useful to identify target genes and pathways that may be strongly implicated in the pathogenesis of MAFLD. The overlapping genes with high specificity were screened using the Gene Expression Omnibus (GEO) database. Through comparison and analysis with the GEO database, we determined that BHMT2 and PKLR could be highly correlated with MAFLD. Clinical data analysis and RNA interference testing in vitro confirmed that BHMT2 may a new regulator of lipid metabolism in MAFLD pathogenesis. These results may provide new ideas for understanding the pathogenesis of MAFLD and thus provide new targets for the treatment of MAFLD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.