Under a Lipschitz condition on distribution dependent coefficients, the central limit theorem and the moderate deviation principle are obtained for solutions of McKean-Vlasov type stochastic differential equations, which generalize the corresponding results for classical stochastic differential equations to the distribution dependent setting.
In this paper, we investigate the weak convergence rate of Euler-Maruyama's approximation for stochastic differential equations with low regular drifts. Explicit weak convergence rates are presented if drifts satisfy an integrability condition including discontinuous functions which can be non-piecewise continuous or in some fractional Sobolev space.
In this paper, employing the weak convergence method, based on a variational representation for expected values of positive functionals of a Brownian motion, we investigate moderate deviation for a class of stochastic differential delay equations with small noises, where the coefficients are allowed to be highly nonlinear growth with respect to the variables. Moreover, we obtain the central limit theorem for stochastic differential delay equations which the coefficients are polynomial growth with respect to the delay variables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.