Upland rice is an ecotype crop formed by long-term domestication and evolution of rice in the dry land without water layer. Generally, its stem and leaf are thick and luxuriant, its leaf is wide and light, its root system is developed, its root hair is abundant, its osmotic pressure of root and cell juice concentration of leaf are high, and it is drought resistant, heat-resistant and water absorbing. The purpose of this study is to reveal the “core flora” of endophytes in upland rice seeds by studying the diversity and community structure of endophytes in upland rice seeds, and to reveal the impact of soil environment on the formation of endophyte community structure in upland rice seeds by comparing with soil environment microorganisms in upland rice habitats. In this study, the high-throughput sequencing technology based on the Illumina Hiseq 2500 platform was used to study the structure and diversity of endophytic bacterial communities using upland rice varieties collected in different places and soil samples from their unified planting sites as materials. There are 42 endophytic OTUs coexisted in the 14 samples. At the phylum level, the first dominant phyla was Proteobacteria (93.81–99.99%) in all 14 samples. At the genus level, Pantoea (8.77% -87.77%), Pseudomonas (1.15–61.58%), Methylobacterium (0.40–4.64%), Sphingomonas (0.26–3.85%), Microbacterium (0.01–4.67%) and Aurantimonas (0.04–4.34%), which are probably the core microflora in upland rice seeds, served as the dominant genera that coexisted in all upland rice seeds tested. Compared with the soil microbial community structure in the upland rice uniform planting site, it was found that it had little effect on the endophytic community structure in upland rice seeds. This study is of great significance for the isolation, screening, functional evaluation and re-action of some functional microorganisms in upland rice in order to improve its agronomic traits. It also provides a certain reference for the interaction between microorganisms and plants.
Few studies have simultaneously examined the influence of clinical characteristics of patients with pneumonia, the vancomycin pharmacokinetic/pharmacodynamic (PK/PD) index, and the phenotypic and genetic characteristics of methicillin-resistant
Staphylococcus aureus
(MRSA) strains. We assessed risk factors for vancomycin failure in patients with MRSA pneumonia by analyzing these influences in a prospective multicenter study.
Currently, an increasing number of hv-CRKP strains have been reported and pose a substantial threat to public health worldwide, because these strains are considered to be simultaneously hypervirulent, carbapenem resistant, and transmissible. In this study, we provided a complete transition process of CRKP and hv-CRKP from their early emergence to outbreak in 10 years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.