10 CaO-based sorbents were synthesized by a sol–gel process supported with various materials, and their cyclic behavior was investigated under the same reaction conditions.
A novel cost-effective method was applied to modified calcium-based sorbents for cyclic high-temperature CO 2 capture. The sorbents were derived from cheap limestone and sea salt, and the main processes of the preparation involved two simple steps: hydration of CaO and impregnation with sea salt in CaO. Results indicated that the simultaneous hydration− impregnation (SHI) method contributed to the formation of highly improved calcium-based sorbents during cyclic calcination/ carbonation reactions. After 40 cycles, the SHI limestone doped with 3.0 wt % sea salt achieved a CO 2 capture capacity of 0.31 g of CO 2 /g of sorbent, which was 126% higher than that of natural limestone. Moreover, the SHI limestone sorbent contained numerous macropores after several cycles. Further investigation on microstructure changes of the sorbents showed that the macropores were relatively stable during cyclic reactions, which can be attributed to the stable behavior of the sorbent. In contrast, the natural limestone lost its micro-and macropores during initial reactions, thereby rapidly losing its sorption capacity during calcium looping cycles. Furthermore, the SHI limestone sorbents showed slightly better mechanical strength than the natural limestone sorbent demonstrated by attrition tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.