Brucellosis occurs periodically and causes great economic and health burdens. Brucellosis prediction plays an important role in its prevention and treatment. This paper establishes relationships between human brucellosis (HB) and land surface temperature (LST), and the normalized difference vegetation index (NDVI). A seasonal autoregressive integrated moving average with exogenous variables (SARIMAX) model is constructed to predict trends in brucellosis rates. The fitted results (Akaike Information Criterion (AIC) = 807.58, Schwarz Bayes Criterion (SBC) = 819.28) showed obvious periodicity and a rate of increase of 138.68% from January 2011 to May 2016. We found a significant effect between HB and NDVI. At the same time, the prediction part showed that the highest monthly incidence per year has a decreasing trend after 2015. This may be because of the brucellosis prevention and control measures taken by the Chinese Government. The proposed model allows the early detection of brucellosis outbreaks, allowing more effective prevention and control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.