This paper proposes two multimodal fusion methods between brain and peripheral signals for emotion recognition. The input signals are electroencephalogram and facial expression. The stimuli are based on a subset of movie clips that correspond to four specific areas of valance-arousal emotional space (happiness, neutral, sadness, and fear). For facial expression detection, four basic emotion states (happiness, neutral, sadness, and fear) are detected by a neural network classifier. For EEG detection, four basic emotion states and three emotion intensity levels (strong, ordinary, and weak) are detected by two support vector machines (SVM) classifiers, respectively. Emotion recognition is based on two decision-level fusion methods of both EEG and facial expression detections by using a sum rule or a production rule. Twenty healthy subjects attended two experiments. The results show that the accuracies of two multimodal fusion detections are 81.25% and 82.75%, respectively, which are both higher than that of facial expression (74.38%) or EEG detection (66.88%). The combination of facial expressions and EEG information for emotion recognition compensates for their defects as single information sources.
Emotion recognition plays an essential role in human–computer interaction. Previous studies have investigated the use of facial expression and electroencephalogram (EEG) signals from single modal for emotion recognition separately, but few have paid attention to a fusion between them. In this paper, we adopted a multimodal emotion recognition framework by combining facial expression and EEG, based on a valence-arousal emotional model. For facial expression detection, we followed a transfer learning approach for multi-task convolutional neural network (CNN) architectures to detect the state of valence and arousal. For EEG detection, two learning targets (valence and arousal) were detected by different support vector machine (SVM) classifiers, separately. Finally, two decision-level fusion methods based on the enumerate weight rule or an adaptive boosting technique were used to combine facial expression and EEG. In the experiment, the subjects were instructed to watch clips designed to elicit an emotional response and then reported their emotional state. We used two emotion datasets—a Database for Emotion Analysis using Physiological Signals (DEAP) and MAHNOB-human computer interface (MAHNOB-HCI)—to evaluate our method. In addition, we also performed an online experiment to make our method more robust. We experimentally demonstrated that our method produces state-of-the-art results in terms of binary valence/arousal classification, based on DEAP and MAHNOB-HCI data sets. Besides this, for the online experiment, we achieved 69.75% accuracy for the valence space and 70.00% accuracy for the arousal space after fusion, each of which has surpassed the highest performing single modality (69.28% for the valence space and 64.00% for the arousal space). The results suggest that the combination of facial expressions and EEG information for emotion recognition compensates for their defects as single information sources. The novelty of this work is as follows. To begin with, we combined facial expression and EEG to improve the performance of emotion recognition. Furthermore, we used transfer learning techniques to tackle the problem of lacking data and achieve higher accuracy for facial expression. Finally, in addition to implementing the widely used fusion method based on enumerating different weights between two models, we also explored a novel fusion method, applying boosting technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.