Thanks to the development of deep learning, the use of data-driven methods to detect pavement distresses has become an active research field. This research makes four contributions to address the problem of efficiently detecting cracks and sealed cracks in asphalt pavements. First, a dataset of pavement cracks and sealed cracks is created, which consists of 10,400 images obtained by a vehicle equipped with a highway condition monitor, with 202,840 labeled distress instances included in these pavement images. Second, we develop a dense and redundant crack annotation method based on the characteristics of the crack images. Compared with traditional annotation, the method we propose generates more object instances, and the localization is more accurate. Next, to achieve efficient crack detection, a semi-automatic crack annotation method is proposed, which reduces the working time by 80% compared with fully manual annotation. Finally, comparative experiments are conducted on our dataset using 13 currently prevailing object detection algorithms. The results show that dense and redundant annotation is effective; moreover, cracks and sealed cracks can be efficiently and accurately detected using the YOLOv5 series model and YOLOv5s is the most balanced model with an F1-score of 86.79% and an inference time of 14.8ms. The pavement crack and sealed crack dataset created in this study is publicly available.
The results of high-precision asphalt concrete pavement crack identification can provide help for pavement maintenance. Therefore, methods of image feature enhancement and crack identification of asphalt concrete pavement cracks are proposed. First of all, we used an industrial CCD camera mounted on a vehicle to collect an asphalt concrete pavement crack image. Then, after using the NeighShrink algorithm to denoise the acquired image, a fractional differential image enhancement algorithm was designed based on image feature blocks to enhance the image features. On this basis, crack characteristics were segmented and processed by watershed algorithm. Through crack direction identification and crack parameter extraction, crack distribution direction, crack length and width and other parameters of asphalt concrete pavement were obtained in order to achieve accurate identification of asphalt concrete pavement cracks. The experiment found that this method can effectively remove noise information from asphalt concrete crack images; after applying this method, the image entropy value of each image was improved, with a minimum improvement of 0.38 and a maximum improvement of 1.98. The time consumed by this method in identifying cracks in asphalt concrete pavement varied between 1.4 s and 2.4 s. When identifying the length of cracks in asphalt concrete pavement, the maximum deviation value was only 0.47 mm; when identifying the width of cracks in asphalt concrete pavement, the maximum deviation value was only 0.31 mm. The above results indicate that by enhancing the image features of asphalt concrete cracks, this method achieves more accurate identification results for crack distribution direction, length and width values, with high identification efficiency and good application effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.