Established RAW264.7 cell lines for osteoclastic differentiation has been widely engaged in bone homeostasis research, however, the efficacy of RANKL independently stimulating has rarely been defined, because protocols were usually developed and modified by various laboratories. Otherwise, problematic issues are also lie in the cell's seeding density, RANKL stimulating time point, and distinguishing osteoclastogenesis ability of RANKL‐treated RAW264.7 cells. Therefore, in the current study, we examined the efficacy of various concentrations of RANKL‐treated RAW264.7 for its osteoclastic differentiation with or without pretreated other costimulators such as: LPS and/or M‐CSF. The oteoclastogenesis ability of RANKL‐treated RAW264.7 cells was demonstrated by bone resorption pit, F‐actin, and osteoclastogenesis specific marker studies. Besides that, through tartrate‐resistant acid phosphatase (TRAP) staining, we clarified to start the treatment with 30 ng/ml RANKL at 12 hr after seeded RAW264.7 with the density of 6.25 × 10
3 cells/cm
2 manifested an significantly increased number of multinucleated osteoclastic cells. Overall, our results establishing an optimal method for RANKL independently inducing RAW 264.7 cell osteoclastic differentiation, which could efficiently generate osteoclasts in vitro for significant advances in our understanding of bone biology.
Renal cell carcinoma (RCC) associated with Xp11.2 translocation/transcription factor E3 ( TFE3) gene fusion is a rare and independent subtype of RCC included in the classification of MiT (microphthalmia-associated transcriptional factor) family translocation RCC. Herein, we report an adult case of Xp11.2 translocation RCC, and review the relevant literature to improve our understanding of the pathogenesis, epidemiology, clinical manifestations, diagnosis, differential diagnosis, treatment, and other aspects of the disease.
Recently, type H vessels were reported to couple angiogenesis and osteogenesis during osteoclastogenesis, and tartrate‐resistant acid phosphatase (Trap)+ preosteoclasts were found to secrete increased PDGF‐BB to promote type H vessel formation. Therefore, utilization of type H vessels may be a strategy to treat diseases involving bone loss. In the present study, we found that nuciferine, a natural bioactive compound, has various effects, including inhibiting osteoclastogenesis and promoting type H vessel formation. Nuciferine inhibited osteoclastogenesis and bone resorption but increased the relative number of Trap+ preosteoclasts. Nuciferine restrained the expression of osteoclast‐specific genes and proteins, promoted PDGF‐BB production and potentiated related angiogenic activities by inhibiting the MAPK and NF‐κB signaling pathways in vitro. We confirmed the bone‐protective effects of nuciferine in ovariectomized mice and found that nuciferine treatment increased the PDGF‐BB concentration and the number of type H vessels in the femur. In conclusion, our results demonstrated that nuciferine can decrease multinucleated osteoclast formation and promote type H vessel formation through preservation of Trap+ preosteoclasts via inhibition of the MAPK and NF‐κB signaling pathways and may be an excellent agent for the treatment of diseases involving bone loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.