BiOI uniform flowerlike hollow microspheres with a hole in its surface structures have been successfully synthesized through an EG-assisted solvothermal process in the presence of ionic liquid 1-butyl-3-methylimidazolium iodine ([Bmim]I). The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), nitrogen sorption, and diffuse reflectance spectroscopy (DRS). A possible formation mechanism for the growth of hollow microspheres was discussed. During the reactive process, ionic liquid not only acted as solvents and templates but also as an I source for the fabrication of BiOI hollow microspheres and was vital for the structure of hollow microspheres. Additionally, we evaluated the photocatalytic activities of BiOI on the degradation of methyl orange (MO) under visible light irradiation and found that as-prepared BiOI hollow microspheres exhibited higher photocatalytic activity than BiOI nanoplates and TiO2 (Degussa, P25) did. On the basis of such analysis, it can be assumed that the enhanced photocatalytic activities of BiOI hollow microspheres could be ascribed to its energy band structure, high BET surface area, high surface-to-volume ratios, and light absorbance.
BackgroundHead and neck squamous cell carcinoma (HNSCC), the most common head and neck cancer, is highly aggressive and heterogeneous, resulting in variable prognoses and immunotherapeutic outcomes. Natural killer (NK) cells play essential roles in malignancies’ development, diagnosis, and prognosis. The purpose of this study was to establish a reliable signature based on genes related to NK cells (NRGs), thus providing a new perspective for assessing immunotherapy response and prognosis of HNSCC patients.MethodsIn this study, NRGs were used to classify HNSCC from the TCGA-HNSCC and GEO cohorts. The genes were evaluated using univariate cox regression analysis based on the differential analysis of normal and tumor samples in TCGA-HNSCC conducted using the “limma” R package. Thereafter, we built prognostic gene signatures using LASSO-COX analysis. External validation was carried out in the GSE41613 cohort. Immunity analysis based on NRGs was performed via several methods, such as CIBERSORT, and immunotherapy response was evaluated by TIP portal website.ResultsWith the TCGA-HNSCC data, we established a nomogram based on the 17-NRGs signature and a variety of clinicopathological characteristics. The low-risk group exhibited a better effect when it came to immunotherapy.Conclusions17-NRGs signature and nomograms demonstrate excellent predictive performance and offer new perspectives for assessing pre-immune efficacy, which will facilitate future precision immuno-oncology research.
To remove polycyclic aromatic hydrocarbons effectively, coal-based activated carbon (CAC) was produced by various microwave power modification. Original and modified CAC (MCACs) were characterized by N2 adsorption method, scanning electron microscopy, X-ray photoelectron spectroscopy, Boehm method, and point of zero charge determination. Their adsorption behavior of naphthalene was also investigated. Adsorption equilibrium isotherms, adsorption kinetics, and thermodynamics of naphthalene adsorption on CAC and MCACs were generated. Microwave modification enhanced the basic surface groups of MCACs, extended their Brunauer-Emmett-Teller surface area and pore volume, and varied their distribution of surface oxygen groups. Surface area, pore volume, and functional groups of MCACs were positively related to their naphthalene-adsorption capacity.The adsorption equilibrium of naphthalene on CAC and MCACs needed only 40 min, and this adsorption was fast. Adsorption isotherms revealed that the Freundlich model was applicable to the adsorption process. The adsorption kinetics of naphthalene onto adsorbents was described by pseudo-second-order kinetic model. Naphthalene adsorption was found to a spontaneous and exothermal adsorption process. All these results showed that microwave radiation was an efficient and rapid method of modifying activated carbons. Moreover, MCACs was a promising low-cost and fast adsorbent that can be used to remove naphthalene from aqueous solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.