The process of diagnosing dementia conditions, especially Alzheimer's disease, and the cognitive tests that are involved in this process, are important areas of study. Everyday Cognition (ECog) is one test that can be used as part of Alzheimer's disease diagnosis to measure cognitive decline in different areas. In this study, we investigate two versions of the ECog test: the study partner reported version (ECogSP), and the patient reported version (ECogPT). We compare these, using statistical analysis and machine learning techniques, to create classification models to demonstrate the progression in ECog scores over time by using the Alzheimer's Disease Neuroimaging Initiative longitudinal data repository (ADNI); participants are classed with having normal cognition, mild cognitive impairment, or Alzheimer's disease. We found that participants who are diagnosed with Alzheimer's disease at baseline, or during a subsequent visit, tend to self-report consistent ECogPT scores over time indicating no change in cognitive ability. However, study partners tend to report higher and increasing ECogSP scores on behalf of participants in the same diagnosis category; this would indicate a degradation in the participant's cognitive ability over time, consistent with the progress of Alzheimer's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.