Multi-axis plunge milling has an increasing application in the manufacturing industry to rough machine open blisks. Its objective is to remove mass stock material with high efficiency and machining stability. In multi-axis plunge milling, cutting parameters are usually determined conservatively as constants to prevent excessive cutting forces and unexpected tool breakage. This is an obstacle to improve the cutting efficiency of rough machining. To address this issue, this article proposes an original approach to schedule the feedrate in multi-axis plunge milling of open blisks based on material removal rate. The material removal rate in plunge milling is directly proportional to the area of the cross section on the removed stock material. According to different types of the cross section, one feeding phase in plunge milling of open blisks is divided into three feeding stages. The cross section in each feeding stage is then identified with a mathematic and geometric method. Its area is then calculated by its constituting elements, such as a polygon, circular arches, and elliptical arches. After that, the feedrate is regulated to guarantee a constant material removal rate in the entire feeding phase. Experimental tests are conducted to verify the proposed feedrate scheduling method. This approach can reduce the cutting time and smooth the variances of cutting forces and torque in multi-axis plunge milling of open blisks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.