Objective: X-ray-based imaging modalities including mammography and computed tomography (CT) are widely used in cancer screening, diagnosis, staging, treatment planning, and therapy response monitoring. Over the past few decades, improvements to these modalities have resulted in substantially improved efficacy and efficiency, and substantially reduced radiation dose and cost. However, such improvements have evolved more slowly than would be ideal because lengthy preclinical and clinical evaluation is required. In many cases, new ideas cannot be evaluated due to the high cost of fabricating and testing prototypes. Wider availability of computer simulation tools could accelerate development of new imaging technologies. This paper introduces the development of a new open-access simulation environment for X-ray-based imaging. Approach: The X-ray-based Cancer Imaging Simulation Toolkit (XCIST) is developed in the context of cancer imaging, but can more broadly be applied. XCIST is physics-based, written in Python and C/C++, and currently consists of three major subsets: digital phantoms, the simulator itself (CatSim), and image reconstruction algorithms; planned future features include a fast dose-estimation tool and rigorous validation. To enable broad usage and to model and evaluate new technologies, XCIST is easily extendable by other researchers. To demonstrate XCIST’s ability to produce realistic images and to show the benefits of using XCIST for insight into the impact of separate physics effects on image quality, we present exemplary simulations by varying contributing factors such as noise and sampling. Main Results: The capabilities and flexibility of XCIST are demonstrated, showing easy applicability to specific simulation problems. Geometric and X-ray attenuation accuracy are shown, as well as XCIST’s ability to model multiple scanner and protocol parameters, and to attribute fundamental image quality characteristics to specific parameters. Significance: This work represents an important first step toward the goal of creating an open-access platform for simulating existing and emerging X-ray-based imaging systems.
Background: Multi-energy computed tomography (CT) provides multiple channel-wise reconstructed images, and they can be used for material identification and k-edge imaging. Nonetheless, the projection datasets are frequently corrupted by various noises (e.g., electronic, Poisson) in the acquisition process, resulting in lower signal-noise-ratio (SNR) measurements. Multi-energy CT images have local sparsity, nonlocal self-similarity in spatial dimension, and correlation in spectral dimension. Methods:In this paper, we propose an image-spectral decomposition extended-learning assisted by sparsity (IDEAS) method to fully exploit these intrinsic priors for multi-energy CT image reconstruction.Particularly, a nonlocal low-rank Tucker decomposition (TD) is employed to utilize the correlation and nonlocal self-similarity priors. Moreover, considering the advantages of multi-task tensor dictionary learning (TDL) in sparse representation, an adaptive spatial dictionary and an adaptive spectral dictionary are trained during the iterative reconstruction process. Furthermore, a weighted total variation (TV) regularization term is employed to encourage local sparsity.Results: Numerical simulation, physical phantom, and preclinical mouse experiments are performed to validate the proposed IDEAS algorithm. Specifically, in the simulation experiments, the proposed IDEAS reconstructed high-quality images that are very close to the references. For example, the root mean square error (RMSE) of IDEAS image in energy bin 1 is as low as 0.0672, while the RMSE of other methods are higher than 0.0843. Besides, the structural similarity (SSIM) of IDEAS reconstructed image in energy bin 1 is greater than 0.98. For material decomposition, the RMSE of IDEAS bone component is as low as 0.0152, and other methods are higher than 0.0199. In addition, the computational cost of IDEAS is as low as 98.8 s for one iteration, and the competing tensor decomposition method is higher than 327 s. Conclusions:To further improve the quality of the reconstructed multi-energy CT images, multiple prior regularizations are introduced to the multi-energy CT reconstructed model, leading to an IDEAS method.Both qualitative and quantitative evaluation of our results confirm the outstanding performance of the proposed algorithm compared to the state-of-the-arts.
Cardiac CT provides critical information for the evaluation of cardiovascular diseases. However, involuntary patient motion and physiological movement of the organs during CT scanning cause motion blur in the reconstructed CT images, degrading both cardiac CT image quality and its diagnostic value. In this paper, we propose and demonstrate an effective and efficient method for CT coronary angiography image quality grading via semi-automatic labeling and vessel tracking. These algorithms produce scores that accord with those of expert readers to within 0.85 points on a 5-point scale. We also train a neural network model to perform fully-automatic motion artifact grading. We demonstrate, using XCAT simulation tools to generate realistic phantom CT data, that supplementing clinical data with synthetic data improves the scoring performance of this network. With respect to ground truth scores assigned by expert operators, the mean square error of grading motion of the right coronary artery is reduced by 36% by synthetic data supplementation. This demonstrates that augmentation of clinical training data with realistically synthesized images can potentially reduce the number of clinical studies needed to train the network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.