Summary
This paper considers a class of cyber‐physical networked systems, which are composed of many interacted subsystems, and are controlled in a distributed framework. The operating point of each subsystem changes with the varying of working conditions or productions, which may cause the change of the interactions among subsystems correspondingly. How to adapt to this change with good closed‐loop optimization performance and appropriate information connections is a problem. To solve this problem, the impaction of a subsystem's control action on the performance of related closed‐loop subsystems is first deduced for measuring the coupling among subsystems. Then, a distributed model predictive control (MPC) for tracking, whose subsystems online reconfigure their information structures, is proposed based on this impaction index. When the operating points changed, each local MPC calculates the impaction indices related to its structural downstream subsystems. If and only if the impaction index exceeds a defined bound, its behavior is considered by its downstream subsystem's MPC. The aim is to improve the optimization performance of entire closed‐loop systems and avoid the unnecessary information connections among local MPCs. Besides, contraction constraints are designed to guarantee that the overall system converges to the set points. The stability analysis is also provided. Simulation results show that the proposed impaction index is reasonable along with the efficiency of the proposed distributed MPC.
Summary
In this paper, we consider a novel iterative DMPC (distributed model predictive control) scheme for linear discrete‐time systems which are connected by network. Every system is dynamically coupled to neighbors. The proposed method can reduce the communication load without degrading performance compared to cooperative DMPC by sensitivity and information topology analysis. The proposed algorithms are applied in a four‐water‐tanks numerical example, and the simulation results show the effectiveness of the proposed algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.