Drowsy driving is a major threat to the safety of drivers and road traffic. Accurate and reliable drowsy driving detection technology can reduce accidents caused by drowsy driving. In this study, we present a new method to detect drowsy driving with vehicle sensor data obtained from the steering wheel and pedal pressure. From our empirical study, we categorized drowsy driving into long-duration drowsy driving and short-duration drowsy driving. Furthermore, we propose an ensemble network model composed of convolution neural networks that can detect each type of drowsy driving. Each subnetwork is specialized to detect long- or short-duration drowsy driving using a fusion of features, obtained through time series analysis. To efficiently train the proposed network, we propose an imbalanced data-handling method that adjusts the ratio of normal driving data and drowsy driving data in the dataset by partially removing normal driving data. A dataset comprising 198.3 h of in-vehicle sensor data was acquired through a driving simulation that includes a variety of road environments such as urban environments and highways. The performance of the proposed model was evaluated with a dataset. This study achieved the detection of drowsy driving with an accuracy of up to 94.2%.
Key Words : smart vehicular camera, video processing, vehicular network, ADAS, ROI ABSTRACT A rapid development of semiconductors, sensors and mobile network technologies has enable that the embedded device includes high sensitivity sensors, wireless communication modules and a video processing module for vehicular environment, and many researchers have been actively studying the smart car technology combined on the high performance embedded devices. The vehicle is increased as the development of society, and the risk of accidents is increasing gradually. Thus, the advanced driver assistance system providing the vehicular status and the surrounding environment of the vehicle to the driver using various sensor data is actively studied. In this paper, we design and implement the smart vehicular camera device providing the V2X communication and gathering environment information. And we studied the method to create the metadata from a received video data and sensor data using video analysis algorithm. In addition, we invent S-ROI, D-ROI methods that set a region of interest in a video frame to improve calculation performance. We performed the performance evaluation for two ROI methods. As the result, we confirmed the video processing speed that S-ROI is 3.0 times and D-ROI is 4.8 times better than a full frame analysis.
Recently, many researches are carried out for Advanced Driver Assistant Systems(ADAS). Especially, many studies are carried out to analyze the road situation using road images. In order to improve the performance of the road situation analysis, it is necessary to acquire images with appropriate exposure time. In this paper, we design and implement multi exposure smart vehicular camera which provides road traffic information to driver. Proposed device can acquire road traffic information by on-board camera and various sensors. And we propose an auto exposure control algorithm for the road environment to increase accuracy of image recognition. In addition, we also propose the switching ROI method that apply existing ROI techniques to overcome a limited computation power of embedded devices. We developed prototype of multi exposure smart vehicular camera and performed experiments to evaluate proposed auto exposure control algorithm and switching ROI method. The results show that the average accuracy of image recognition increased by 13.45%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.