The secreted protein sonic hedgehog (Shh) plays an integral role in forming the ventral midline of the vertebrate central nervous system (CNS). In the absence of Shh function, ventral midline development is perturbed resulting in holoprosencephaly (HPE), a structural malformation of the brain, as well as in neuronal patterning and path finding defects along the length of the anteroposterior neuraxis. Central to the understanding of ventral neural tube development is how Shh transcription is regulated in the CNS. To address this issue, we devised an enhancer trap assay to systematically screen 1 Mb of DNA surrounding the Shh locus for the ability to target reporter gene expression to sites of Shh transcription in transgenic mouse embryos. This analysis uncovered six enhancers distributed over 400 kb, the combined activity of which covered all sites of Shh expression in the mouse embryonic CNS from the ventral forebrain to the posterior extent of the spinal cord. To evaluate the relative contribution of these enhancers to the overall pattern of Shh expression, individual elements were deleted in the context of a transgenic Bac reporter assay. Redundant mechanisms were found to control Shh-like reporter activity in the ventral spinal cord, hindbrain and regions of the telencephalon, whereas unique elements regulated Shh-like expression in the ventral midbrain, the majority of the ventral diencephalon and parts of the telencephalon. Three ventral forebrain enhancers locate on the distal side of translocation breakpoints that occurred upstream of Shh in human cases of HPE, suggesting that displacement of these regulatory elements from the Shh promoter is a likely cause of HPE in these individuals.
SUMMARY Holoprosencephaly (HPE), the most common forebrain malformation, is characterized by an incomplete separation of the cerebral hemispheres. Mutations in the homeobox gene SIX3 account for 1.3% of all cases of human HPE. Using zebrafish-based assays, we have now determined that HPE-associated Six3 mutant proteins function as hypomorphs. Haploinsufficiency of Six3 caused by deleting one allele of Six3 or by replacing wild-type Six3 with HPE-associated Six3 mutant alleles was sufficient to recapitulate in mouse models most of the phenotypic features of human HPE. We demonstrate that Shh is a direct target of Six3 in the rostral diencephalon ventral midline (RDVM). Reduced amounts of functional Six3 protein fail to activate Shh expression in the mutant RDVM and ultimately lead to HPE. These results identify Six3 as a direct regulator of Shh expression and reveal a cross-regulatory loop between Shh and Six3 in the ventral forebrain.
Summary Septo-optic dysplasia (SOD) is a congenital brain anomaly that results in pituitary, optic nerve, and midline forebrain defects. The etiology of SOD is poorly understood, with the majority of cases being sporadic. In rare instances, SOD is caused by mutations in Sox2, Sox3 or Hesx1, but how this manifests in disease is not entirely certain. We demonstrate here that mouse embryos lacking Sonic hedgehog (Shh) in the prospective hypothalamus exhibit key features of SOD, including pituitary hypoplasia and absence of the optic disc. The hypothalamic source of Shh is required to maintain gene expression boundaries along the anteroposterior and mediolateral neural axes that are important for proper pituitary and eye development, respectively. We further reveal that Sox2 and Sox3 are dose dependent regulators of Shh transcription, which directly bind and activate a long-range Shh forebrain enhancer. These data indicate that reduced levels of Shh expression in the hypothalamus cause SOD.
The secreted morphogen, Sonic hedgehog (Shh) is a significant determinant of brain size and craniofacial morphology1-4. In humans, SHH haploinsufficiency results in holoprosencephaly (HPE)5, a defect in anterior midline formation. Despite the importance of maintaining SHH transcript levels above a critical threshold, we know little about the upstream regulators of SHH expression in the forebrain. Here we describe a combination of genetic and biochemical experiments to uncover a critical pair of cis and trans acting determinants of Shh forebrain expression. A rare nucleotide variant located 460kb upstream of SHH was discovered in an individual with HPE that resulted in the loss of Shh brain enhancer-2 (SBE2) activity in the hypothalamus of transgenic mouse embryos. Using a DNA affinity capture assay we screened SBE2 sequence for DNA binding proteins and identified members of the Six3/Six6 homeodomain family as candidate regulators of Shh transcription. Six3 and Six6 showed reduced binding affinity for the mutant compared to wild type SBE2 sequence. Moreover, HPE causing mutations in Six3 failed to bind and activate SBE2, whereas, Shh forebrain expression was unaltered in Six6 −/− embryos. These data provide a direct link between Six3 and Shh regulation during normal forebrain development and in the pathogenesis of HPE. Previous efforts to address this issue focused on determining the genomic location of functional Shh regulatory elements13. These experiments identified six enhancers distributed over a 500 kb interval surrounding the Shh gene that directed reporter activity to most areas of Shh expression in the mouse CNS, including the ventral forebrain ( Fig. 1). In particular, the highly conserved Shh brain enhancer-2 (SBE2), located 460 kb upstream of the SHH coding sequence, was identified as unique in its ability to regulate Shh-like expression throughout the hypothalamus. KeywordsTo identify functionally relevant nucleotides in SBE2, we screened the 1.1 kb sequence mediating its activity for mutations in humans with HPE. We reasoned that HPE causing variants in SBE2 could aid in identifying critical cis and trans determinants of SHH expression in the forebrain. Similar resequencing approaches have been successful in identifying common and rare coding sequence variants in genes associated with common diseases, but have not been routinely applied to the study of remote noncoding regions in rare diseases such as HPE (1:16,000 livebirths)12,14.From 474 HPE patients, we identified one individual who was heterozygous for a C to T base change at nucleotide position 444 of the enhancer sequence. The C/T variant is situated within a block of 10 nucleotides that have been maintained in human, mouse, chicken and frog for over 350 million years ( Fig. 1). This C/T nucleotide variant was not observed in DNA samples from 450 unrelated control individuals. The affected female exhibited features of semilobar HPE including microcephaly, midfacial hypoplasia, cleft-lip and palate, diabetes insipidus, and moderate fus...
Background:Some oncogenes such as ERBB2 and EGFR are over-expressed in only a subset of patients. Cancer outlier profile analysis is one of computational approaches to identify outliers in gene expression data. A database with a large sample size would be a great advantage when searching for genes over-expressed in only a subset of patients.Description:GENT (Gene Expression database of Normal and Tumor tissues) is a web-accessible database that provides gene expression patterns across diverse human cancer and normal tissues. More than 40000 samples, profiled by Affymetrix U133A or U133plus2 platforms in many different laboratories across the world, were collected from public resources and combined into two large data sets, helping the identification of cancer outliers that are over-expressed in only a subset of patients. Gene expression patterns in nearly 1000 human cancer cell lines are also provided. In each tissue, users can retrieve gene expression patterns classified by more detailed clinical information.Conclusions:The large samples size (>24300 for U133plus2 and >16400 for U133A) of GENT provides an advantage in identifying cancer outliers. A cancer cell line gene expression database is useful for target validation by in vitro experiment. We hope GENT will be a useful resource for cancer researchers in many stages from target discovery to target validation. GENT is available at http://medicalgenome.kribb.re.kr/GENT/ or http://genome.kobic.re.kr/GENT/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.