Chaotic time series forecasting has been widely used in various domains, and the accurate predicting of the chaotic time series plays a critical role in many public events. Recently, various deep learning algorithms have been used to forecast chaotic time series and achieved good prediction performance. In order to improve the prediction accuracy of chaotic time series, a prediction model (Att-CNN-LSTM) is proposed based on hybrid neural network and attention mechanism. In this paper, the convolutional neural network (CNN) and long short-term memory (LSTM) are used to form a hybrid neural network. In addition, a attention model with <i>softmax</i> activation function is designed to extract the key features. Firstly, phase space reconstruction and data normalization are performed on a chaotic time series, then convolutional neural network (CNN) is used to extract the spatial features of the reconstructed phase space, then the features extracted by CNN are combined with the original chaotic time series, and in the long short-term memory network (LSTM) the combined vector is used to extract the temporal features. And then attention mechanism captures the key spatial-temporal features of chaotic time series. Finally, the prediction results are computed by using spatial-temporal features. To verify the prediction performance of the proposed hybrid model, it is used to predict the Logistic, Lorenz and sunspot chaotic time series. Four kinds of error criteria and model running times are used to evaluate the performance of predictive model. The proposed model is compared with hybrid CNN-LSTM model, the single CNN and LSTM network model and least squares support vector machine(LSSVM), and the experimental results show that the proposed hybrid model has a higher prediction accuracy.
Chaos is widespread in non-linear systems such as finance, energy, and weather. In the chaos system, a variable changing with time generates a chaotic time series, which contains a wealth of information about the non-linear system, and it is helpful for us to analyze and understand chaos systems. Traditional hybrid models for chaotic time series prediction based on neural networks have problems such as low prediction accuracy and difficulty in determining the network topologies. In recent years, the chaotic time series prediction has attached the attention of researchers in the area of deep learning. In this paper, we use a deep hybrid neural network (DHNN) based on convolutional neural network (CNN), gated recurrent unit (GRU) network, and attention mechanism to predict chaotic time series. Besides, we use the idea of neuroevolution to optimize the topologies of the DHNN. In the DHNN, we use CNN to capture spatial features from phase space reconstruction of chaotic time series. Then, we combine spatial features with the original chaotic time series. GRU extracts the spatio-temporal features from the combined sequence, and an attention mechanism with a non-linear activation function is designed to capture critical spatio-temporal features. Besides, we propose an improved differential evolution (IDE) algorithm to optimize the topologies of the DHNN, including the filter sizes of CNN and the number of hidden neurons of GRU. We develop the IDE with an adaptive mutation operator and dynamic chaos crossover operator, which can improve convergence speed and reduce optimization time. In this paper, we use the theoretical Lorenz datasets, monthly mean total sunspot datasets, and the actual coalmine gas concentration datasets to verify the prediction accuracy of the proposed prediction model. Experimental results have shown that the proposed prediction model performs well in chaotic time series forecasting. INDEX TERMS Chaotic time series prediction, convolutional neural network, gated recurrent unit, attention mechanism, improved differential evolution, neuroevolution
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.