Multispectral images are increasingly used for pedestrian detection. Preliminary fusion strategies would fail to exploit informative features from cross-spectral images, or worse, may introduce additional interference. In this paper, we propose an attention based multi-layer fusion network in the triple-stream deep convolutional neural network architecture for multispectral pedestrian detection. The effectiveness of multi-layer fusion is examined and verified in this work. Furthermore, a channel-wise attention module (CAM) and a spatial-wise attention module (SAM) are developed and incorporated into the network aimng at more subtle adjustment to weights of multispectral features along both the channel and spatial dimensions respectively. Channel-wise attention is trained with self-supervision while spatialwise attention is trained with external supervision as we remodel its learning process as saliency detection. Both attention-based weighting mechanisms are evaluated separately and then sequentially. Experimental results on the KAIST dataset show that the proposed multi-layer cross-spectral fusion R-CNN (CS-RCNN), with spatial-wise weighting applied alone, achieves state-of-the-art performance on all-day detection while outperforming compared methods at nighttime. INDEX TERMS Convolutional neural networks, pedestrian detection, image fusion, deep learning
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.