Wood-plastic composites (WPCs) have been widely used as exterior construction materials. The effect of alkali-treated (with NaOH concentrations of 1%, 3%, 5%, and 7%) eucalyptus fiber on the three-body abrasion behaviors of eucalyptus/polyvinyl chloride (PVC) composites was investigated. The results showed that the eucalyptus fiber treated with NaOH had a higher crystallinity and improved hardness and impact strength. The wear loss and rate of alkali-treated eucalyptus/PVC composites was noticeably decreased compared to the natural eucalyptus fiber. The scanning electron microscopy (SEM) examination on the worn surfaces revealed that the main wear mechanism of the eucalyptus/PVC composites was a combination of microcutting and microindentations.
The cognitive control processes may be disrupted by abstinence in smokers, which may be helpful in the development and maintenance of addictive behavior. The purpose of this study was to measure the performance of cognitive task after 12 h of smoking abstinence by using event-related potentials (ERPs), including the error-related negativity (ERN) and the error positivity (Pe). In Eriksen flanker task, electroencephalography (EEG) signals of 24 smokers were recorded in two conditions: satiety and 12 h abstinence. In the behavioral data, both conditions exhibited more errors and more time on the incongruent trials than congruence. Meantime, the Minnesota Nicotine Withdrawal Scale (MNWS) score was increased during abstinence. Smokers showed reduced ERN and Pe after 12 h of abstinence, compared with satiety condition. The results indicate that the diminished error processing in young smokers after 12 h of abstinence. It may be related to increased withdrawal symptoms. In conclusion, the disrupted neurophysiological indexes in the general behavior monitoring system may be caused by abstinence. The results of this study may provide us with new ideas about the effects of short-term abstinence on brain cognitive neuroscience and be helpful for the solution of relapse.
The use of natural fiber polymer composites is being considered in many applications. In the current work, the three-body abrasion performance of an alkali-treated eucalyptus and polyvinyl chloride (PVC) composite was studied at different applied loads (40 to 130 N), sliding velocities (1.86 to 3.73 m/s), sliding distance (up to 4.0 km), and abrasive particle size (0.25 to 0.75 mm). The results showed that the applied load and sliding distance affected three-body abrasion. At lower applied loads and shorter sliding distances, higher specific wear rates (Ws) and more obvious worn surface features were exhibited, while sliding velocity had less of an effect on the wear behavior. The Ws and worn surface roughness increased as abrasive particle size increases, and deeper grooves and higher deformation on the worn surface were found due to the enhanced material loss from the larger particle size abrasive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.