TMPOP2 was previously suggested to be an oncogenic long noncoding RNA which is excessively expressed in cervical cancer cells and inhibits E-cadherin gene expression by recruiting transcription repressor EZH2 to the gene promoter. So far, the function and regulation of TMPOP2 in cervical cancer remain largely unknown. Herein, we found that TMPOP2 expression was correlated with human papillomavirus 16/18 (HPV16/18) E6 and E7 in cervical cancer cell lines CaSki and HeLa. Tumor suppressor p53, which is targeted for degradation by HPV16/18, was demonstrated to associate with two p53 response elements in the TMPOP2 promoter to repress the transcription of the TMPOP2 gene. Reciprocally, ectopic expression of TMPOP2 was demonstrated to sequester tumor repressor microRNAs (miRNAs) miR-375 and miR-139 which target HPV16/18 E6/E7 mRNA and resulted in an upregulation of HPV16/18 E6/E7 genes. Thereby, HPV16/18 E6/E7 and the long noncoding RNA (lncRNA) TMPOP2 form a positive feedback loop to mutually derepress gene expression in cervical cancer cells. Moreover, results of RNA sequencing and cell cycle analysis showed that knockdown of TMPOP2 impaired the expression of cell cycle genes, induced cell cycle arrest, and inhibited HeLa cell proliferation. Together, our results indicate that TMPOP2 and HPV16/18 E6/E7 mutually strengthen their expression in cervical cancer cells to enhance tumorigenic activities. IMPORTANCE Human papillomaviruses 16 and 18 (HPV16/18) are the main causative agents of cervical cancer. Viral proteins HPV16/18 E6 and E7 are constitutively expressed in cancer cells to maintain oncogenic phenotypes. Accumulating evidences suggest that HPVs are correlated with the deregulation of long noncoding RNAs (lncRNAs) in cervical cancer, although the mechanism was unexplored in most cases. TMPOP2 is a newly identified lncRNA excessively expressed in cervical cancer. However, the mechanism for the upregulation of TMPOP2 in cervical cancer cells remains largely unknown and its relationship with HPVs is still elusive. The significance of our research is in revealing the mutual upregulation of HPV16/18 E6/E7 and TMPOP2 with the molecular mechanisms explored. This study will expand our understandings of the oncogenic activities of human papillomaviruses and lncRNAs. KEYWORDS HPV E6/E7, cervical cancer, lncRNA TMPOP2, miRNAs, p53 H igh-risk human papillomaviruses (HPVs), primarily including HPV16 and HPV18, are causative agents of cervical cancer, which is one of the leading lethal female cancers worldwide. Integration of HPV DNA into the host cell genome results in the constitutive high expression of two viral oncogenes, HPV E6 and E7, under the control of cellular transcription factors. Viral protein E6 promotes p53 protein degradation FIG 4 TMPOP2 reciprocally regulated the expression of HPV E6/E7 in cervical cancer cells. (A) The efficacy of TMPOP2 knockdown in HeLa cells. (B)The protein levels of HPV18 E6/E7 were decreased following TMPOP2 knockdown. GAPDH was the protein loading control. (C) The mRNA levels of HPV1...
Triple-negative breast cancer is an aggressive subtype of breast cancer with poor clinical outcomes and poor prognosis. Hesperetin is an active component extracted from Citrus fruits and Traditional Chinese Medicine has a wide range of pharmacological effects. Here, we assessed the anti-migration and anti-invasive effects and explored inhibitory mechanisms of hesperetin on metastasis of human triple negative breast cancer MDA-MB-231 cells. Cell viability experiments revealed that 200 μM hesperetin has a clear inhibitory effect on MDA-MB-231 cells. TGF-β1 treatment induces apparent tumor progression in MDA-MB-231 cells including aberrant wound-healing and invasion ability, which is effectively suppressed by hesperetin co-treatment. Additionally, hesperetin inhibited the TGF-β1-mediated actin stress fiber formation. Western blot results showed that hesperetin suppressed the TGF-β1-mediated (i) activation of Fyn, (ii) phosphorylation of paxillin at Y31, Y88, and Y118 sites, (iii) the increased expression of RhoA, and (iv) activation of Rho-kinase. We demonstrated the increased interaction of Fyn with paxillin and RhoA protein in the TGF-β1-induced metastasis of MDA-MB-231 cells. Small interfering RNA Fyn inhibited phosphorylation of paxillin (Y31) and activation of Rho-kinase induced by TGF-β1. In conclusion, hesperetin has a significant inhibitory effect on migration and invasion of MDA-MB-231 cells induced by TGF-β1, which might be attributed to inhibiting the Fyn/paxillin/RhoA pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.