Bipolar disorder (BD) is a serious mental illness with substantial common variant heritability. However, the role of rare coding variation in BD is not well established. We examined the protein-coding (exonic) sequences of 3,987 unrelated individuals with BD and 5,322 controls of predominantly European ancestry across four cohorts from the Bipolar Sequencing Consortium (BSC). We assessed the burden of rare, protein-altering, single nucleotide variants classified as pathogenic or likely pathogenic (P-LP) both exome-wide and within several groups of genes with phenotypic or biologic plausibility in BD. While we observed an increased burden of rare coding P-LP variants within 165 genes identified as BD GWAS regions in 3,987 BD cases (meta-analysis OR = 1.9, 95% CI = 1.3–2.8, one-sided p = 6.0 × 10−4), this enrichment did not replicate in an additional 9,929 BD cases and 14,018 controls (OR = 0.9, one-side p = 0.70). Although BD shares common variant heritability with schizophrenia, in the BSC sample we did not observe a significant enrichment of P-LP variants in SCZ GWAS genes, in two classes of neuronal synaptic genes (RBFOX2 and FMRP) associated with SCZ or in loss-of-function intolerant genes. In this study, the largest analysis of exonic variation in BD, individuals with BD do not carry a replicable enrichment of rare P-LP variants across the exome or in any of several groups of genes with biologic plausibility. Moreover, despite a strong shared susceptibility between BD and SCZ through common genetic variation, we do not observe an association between BD risk and rare P-LP coding variants in genes known to modulate risk for SCZ.
In the genome-wide association analysis of population-based biobanks, most diseases have low prevalence, which results in low detection power. One approach to tackle the problem is using family disease history, yet existing methods are unable to address type I error inflation induced by increased correlation of phenotypes among closely related samples, as well as unbalanced phenotypic distribution. We propose a new method for genetic association test with family disease history, TAPE (mixed-model-based Test with Adjusted Phenotype and Empirical saddlepoint approximation), which controls for increased phenotype correlation by adopting a two-variance-component mixed model and accounts for case-control imbalance by using empirical saddlepoint approximation. We show through simulation studies and analysis of UK-Biobank data of white British samples and KoGES data of Korean samples that the proposed method is computationally efficient and gains greater power for detection of variant-phenotype associations than common GWAS with binary traits while yielding better calibration compared to existing methods.
Motivation
In the genome-wide association analysis of population-based biobanks, most diseases have low prevalence, which results in low detection power. One approach to tackle the problem is using family disease history, yet existing methods are unable to address type I error inflation induced by increased correlation of phenotypes among closely related samples, as well as unbalanced phenotypic distribution.
Results
We propose a new method for genetic association test with family disease history, mixed-model-based Test with Adjusted Phenotype and Empirical saddlepoint approximation, which controls for increased phenotype correlation by adopting a two-variance-component mixed model, accounts for case–control imbalance by using empirical saddlepoint approximation, and is flexible to incorporate any existing adjusted phenotypes, such as phenotypes from the LT-FH method. We show through simulation studies and analysis of UK Biobank data of white British samples and the Korean Genome and Epidemiology Study of Korean samples that the proposed method is robust and yields better calibration compared to existing methods while gaining power for detection of variant–phenotype associations.
Availability and implementation
The summary statistics and code generated in this study are available at https://github.com/styvon/TAPE.
Supplementary information
Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.