BackgroundRice blast, caused by the ascomycete Magnaporthe oryzae (Mo), imposes a major constraint on rice productivity. Managing the disease through the deployment of host resistance requires a close understanding of race structure of the pathogen population.ResultsThe host/pathogen interaction between isolates sampled from four Mo populations collected across the rice-producing regions of China was tested using two established panels of differential cultivars. The clearest picture was obtained from the Chinese cultivar panel, for which the frequency of the various races, the race diversity index, the specific race isolate frequency, and the frequency of the three predominant races gave a consistent result, from which it was concluded that the pathogen population present in the southern production region was more diverse than that in the northeastern region. The four blast resistance genes Pi1, Pik, Pik-m, and Piz all still remain effective in the southern China rice production area, as does Pi1 in the northeastern region. The effectiveness of Pita, Pik-p, Piz, and Pib is restricted to single provinces. The distinctive resistance profile shown by the Chinese differential cultivar set implied the presence of at least five as yet unidentified blast resistance genes.ConclusionsThe Chinese differential cultivar set proved to be more informative than the Japanese one for characterizing the race structure of the rice blast pathogen in China. A number of well characterized host resistance genes, in addition to some as yet uncharacterized ones, remain effective across the major rice production regions in China.Electronic supplementary materialThe online version of this article (doi: 10.1186/s12284-017-0185-y) contains supplementary material, which is available to authorized users.
Rice blast caused by the fungus Magnaporthe oryzae is one of the most destructive diseases of rice. Its control through the deployment of host resistance genes would be facilitated by understanding the pathogen’s race structure. Here, dynamics of race structures in this decade in Heilongjiang province were characterized by Chinese differential cultivars. Two patterns of dynamics of the race structures emerged: both race diversity and population-specific races increased gradually between 2006 and 2011, but they increased much more sharply between 2011 and 2015, with concomitant falls in both the population-common races and dominant races. Four races (ZD1, ZD3, ZD5, and ZE1) were among the top three dominant races over the whole period, indicating that the core of the race structure remained stable through this decade. On the host side, the composition of resistance in the cultivar differential set could be divided in two: the three indica-type entries of the differential set expressed a higher level of resistance to the population of M. oryzae isolates tested than did the four japonica-type entries. The cultivars Tetep and Zhenlong 13 as well as two additional resistance genes α and ε were confirmed as the most promising donors of blast resistance for the local rice improvement programs. [Formula: see text]Copyright © 2019 The Author(s). This is an open-access article distributed under the CC BY-NC-ND 4.0 International license .
Rice blast, caused by Pyricularia oryzae, is considered one of the most damaging fungal diseases affecting rice. Understanding how the pathogen’s race structure varies over time supports the efforts of rice breeders to develop improved cultivars. Here, the race structure of P. oryzae in Guangdong province, China, where rice is cropped twice per year, was assessed over 18 seasons from 1999 through 2008. The analysis was based on the reactions of a panel of seven differential Chinese cultivars to inoculation with a set of 1,248 isolates of P. oryzae in the province. The “total race frequency” parameter ranged from 14.7% to 39.7%, while the “race diversity index” varied from 0.63 to 0.93. Twelve (ZA63, ZA31, ZA29, ZA21, ZA13, ZA9, ZB30, ZB17, ZB8, ZB2, ZC14, and ZC8) and two (ZD8 and ZD3) races were recognized as specific to indica and japonica rice types, respectively. Of the 59 distinct races identified, only two indica type races (ZC13 and ZC15) were identified as population-common, while nine indica type races (ZB1, ZB5, ZB6, ZB7, ZB13, ZB15, ZC5, ZC13, and ZC15) and one japonica type race (ZG1) were deemed to be population-dominant; the “total top two race isolate frequency” parameter ranged from 29.8% to 74.5%. On the host side, dynamics of resistance structures of the differential set were divided into three patterns: both Tetep and Kanto 51 expressed the highest and most stable resistance, both Sifeng 43 and Lijiangxintuanheigu conveyed much lower and unstable resistance, and Zhenlong 13, Dongnong 363, and Heijiang 18 performed intermediate and seasonally dynamic resistance. Three interesting points distinguishing race structures of P. oryzae populations in southern and northeastern China were also discussed.
Rice blast (the causative agent the fungus Magnaporthe oryzae) represents a major constraint on the productivity of one of the world’s most important staple food crops. Genes encoding resistance have been identified in both the Xian and Geng subspecies genepools, and combining these within new cultivars represents a rational means of combating the pathogen. In this research, deeper allele mining was carried out on Pid2, Pid3, and Pid4 via each comprehensive FNP marker set in three panels consisting of 70 Xian and 58 Geng cultivars. Within Pid2, three functional and one non-functional alleles were identified; the former were only identified in Xian type entries. At Pid3, four functional and one non-functional alleles were identified; once again, all of the former were present in Xian type entries. However, the pattern of variation at Pid4 was rather different: here, the five functional alleles uncovered were dispersed across the Geng type germplasm. Among all the twelve candidate functional alleles, both Pid2-ZS and Pid3-ZS were predominant. Furthermore, the resistance functions of both Pid2-ZS and Pid3-ZS were assured by transformation test. Profiting from the merits of three comprehensive FNP marker sets, the study has validated all three members of the Pid family as having been strictly diverged into Xian and Geng subspecies: Pid2 and Pid3 were defined as Xian type resistance genes, and Pid4 as Geng type. Rather limited genotypes of the Pid family have been effective in both Xian and Geng rice groups, of which Pid2-ZS_Pid3-ZS has been central to the Chinese rice population.
Background: Rice blast (causative agent the fungus Pyricularia oryzae) represents a major constraint over the productivity of one of the world’s most important staple foods. Genes encoding resistance have been identified in both the indica and japonica subspecies genepools and combining these within new cultivars represents a rational means of combating the pathogen.Results: In this research, a deeper allele mining was carried out on Pid-2, Pid-3, and Pid-4 by each of comprehensive FNP marker set in the three panels consisting of 70 indica and 58 japonica cultivars. Within Pid-2, three functional and one non-functional alleles were identified; the former were only identified in indica type entries. At Pid-3, four functional and one non-functional alleles were identified, and once again, all of the formers were present in indica type entries. However, the pattern of variation at Pid-4 was rather different: here, the five functional alleles uncovered were dispersed across the japonica type germplasm. Among all the 12 candidate functional alleles, both Pid2-ZS and Pid3-ZS were predominant. Furthermore, the resistance functions of both Pid2-ZS and Pid3-ZS were assured by transformation test. Conclusions: Profiting from merits of three comprehensive FNP marker sets, the study has validated that all three members of the Pid family have been strictly diverged into indica and japonica subspecies: Pid-2 and Pid-3 were defined as indica type resistance genes, and Pid-4 as japonica one. Rather limited genotypes of the Pid family have been effective in both indica and japonica rice groups, of which Pid2-ZS+Pid3-ZS has been central to the Chinese rice population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.