The surface wettability effect on fluid transport in nanoscale slit pores is quantitatively accessed by using nonequilibrium molecular dynamics (NEMD) simulation incorporating with density functional theory (DFT). In particular, the slip lengths of benzene steady flows under various wetting conditions are computed with NEMD simulations and a quasi-general expression is given, while the structural properties are investigated with DFT. By taking into account the inhomogeneity of fluid density inside pore, we find that the conventional flux enhancement rate is associated with both the molecule slipping and geometrical confinement, and it becomes drastically high in solvophobic pores especially when the pore size is of several fluid diameters. In good agreement with experimental results, we further show that the wettability effect competes with pore size effect in determining the flux after pore inner surface modification, and a high flux can be achieved when the deposited layer is solvophobic yet thin.
Pickering emulsions combining surface-active and catalytic properties offer a promising platform for conducting interfacial reactions between immiscible reagents. Despite the significant progress in the design of Pickering interfacial catalysts for a broad panel of reactions, the dynamics of Pickering emulsions under reaction conditions is still poorly understood. Herein, using benzene hydroxylation with aqueous HO as a model system, we explored the dynamics of benzene/water Pickering emulsions during reaction by dissipative particle dynamics. Our study points out that the surface wettability of the silica nanoparticles is affected to a higher extent by the degree of polymer grafting rather than an increase of the chain length of hydrophobic polymer moieties. A remarkable decline of the oil-in-water (O/W) interfacial tension was observed when increasing the yield of the reaction product (phenol), affecting the emulsion stability. However, phenol did not alter to an important extent the distribution of immiscible reagents around the nanoparticles sitting at the benzene/water interface. A synergistic effect between phenol and silica nanoparticles on the O/W interfacial tension of the biphasic system could be ascertained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.