Sensory memory is capable of recording information and giving feedback based on external stimuli. Haptic memory in particular can retain the sensation of the interaction between the human body and the environment and help humans to describe the physical quantities in their environment and manipulate objects in daily activities. Although sensitive and accurate tactile sensors have been produced on optical and electronic devices, their rigorous operation and equipment requirements seriously limit their further applicability. In addition, their poor retainability after the removal of external stimuli also warrants further improvements. Thus, haptic memory materials, having simple structures and high sensitivity, are highly desired. Herein, we successfully developed two piezochromic assemblies assisted by halogen bonding for haptic memory. The halogen bond not only contributes to the fabrication of the network and enhances integrative stability but also broadens the natural piezofluorescent range, thus promoting sensory sensitivity. Moreover, the colorimetric change of the assemblies could be well-retained after the stimulus was removed. Upon mild heating treatment, the piezochromic response could be recovered to its original state, confirming the recyclability of this haptic memory material for use in practical applications. The present work enriches the library of piezochromic materials with enhanced performance for haptic memory.
3,4-dihydro-2H-1,2,4,3-triazaborol-3-yl-lithium 3 was synthesized and fully characterized. The (11)B NMR spectrum, X-ray diffraction analysis, and computational studies revealed the ionic nature of the B-Li bond, and indeed 3 displays nucleophilic property which allowed preparation of a series of 1,2,4,3-triazaborol-3-yl-metal complexes (Al; 5, Au; 6, Zn; 7, Mg; 8, Sb; 9, and Bi; 10). 3 reacted with CO (1 atm) and various isonitriles under ambient condition, and mechanistic study suggests that the reactions with CO and aryl isonitriles proceed via an insertion of CO and isonitrile carbon into the B-Li bond followed by isomerization to yield transient carbene species, one of which was confirmed by trapping with S8. With PhNC, compounds 5 and 7·(thf) underwent exchange of THF molecule coordinating to the metal center with isonitrile, whereas insertion of isonitrile carbon occurred at the B-Bi bond in 10 which afforded stable bismuth (boryl)iminomethane 20.
Here, we present our recent progress on the synthesis, crystal structure, physical properties and DFT calculations of a novel large pyrene-fused N-heteroacene (15RINGS) with 15 aromatic six-membered rings linearly fused in one row. The long conjugated backbone (more than 35 Å) of 15RINGS possesses a dual-bending feature (the bending angle is about 13.2°).
A 2,3-dihydro-1H-1,2-azaborole derivative 2 was converted to a cyclic (alkyl) (amino)carbene (cAAC) via 1,2-hydrogen migration triggered by boranes to afford cAAC-borane adducts. This procedure allowed us to develop an asymmetrical diborene cAAC·(Br)B═B(Br)·IDip 6, which was isolated and fully characterized. The B NMR spectrum, X-ray diffraction analysis and computational studies indicate that π-electrons on the central B moiety in 6 are unequivalently distributed, and thus polarized. A complete scission of the B═B double bond in 6 was achieved by the treatment with an isonitrile, which led to the formation of a base-stabilized B,N-containing methylenecyclopropane 7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.