Qipengyuania sediminis gen. nov., sp. nov., a member of the family Erythrobacteraceae isolated from subterrestrial sediment Oil and Gas Survey, China Geological Survey, Beijing 10029, PR China A Gram-reaction-negative, non-motile, facultatively aerobic bacterium, designated strain M1 T , was isolated from a subterrestrial sediment sample of Qiangtang Basin in Qinghai-Tibetan plateau, China. The strain formed rough yellow colonies on R2A plates. Cells were oval or short rod-shaped, catalase-positive and oxidase-negative. Phylogenetic analyses based on 16S rRNA gene sequences indicated that the isolate belonged to the family Erythrobacteraceae and showed 96.2-96.4 % 16S rRNA gene sequence similarities to its closest relatives. Chemotaxonomic analysis revealed ubiquinone-10 (Q10) as the dominant respiratory quinone of strain M1 T and C 17 : 1 v6c (44.2 %) and C 18 : 1 v7c (13.7 %) as the major fatty acids. The major polar lipids were phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, sphingoglycolipid, three unidentified glycolipids, one unidentified phosphoglycolipid and one unidentified lipid. The DNA G+C content of strain M1 T was 73.7 mol%. On the basis of phenotypic, phylogenetic and genotypic data presented in this study, strain M1 T represents a novel species of a new genus in the family Erythrobacteraceae, for which the name Qipengyuania sediminis gen. nov., sp. nov. is proposed. The type strain of the type species is M1 T (5CGMCC 1.12928 T 5JCM 30182 T ).
One of the great challenges of postoperative prostate cancer management is tumor recurrence. Although postoperative chemotherapy presents benefits to inhibit unexpected recurrence, it is still limited due to the drug resistance or intolerable complications of some patients. Electrospun nanofiber, as a promising drug carrier, demonstrating sustained drug release behavior, can be implanted into the tumor resection site during surgery and is conductive to tumor inhibition. Herein, we fabricated electrospun nanofibers loaded with doxorubicin (DOX) and ABT199 to synergistically prevent postoperative tumor recurrence. Enzymatic degradation of the biodegradable electrospun nanofibers facilitated the release of the two drugs. The primarily released DOX from the electrospun nanofibers effectively inhibited tumor recurrence. However, the sustained release of DOX led to drug resistance of the tumor cells, yielding unsatisfactory eradication of the residual tumor. Remarkably, the combined administration of DOX and ABT199, simultaneously released from the nanofibers, not only prolonged the chemotherapy by DOX but also overcame the drug resistance via inhibiting the Bcl-2 activation and thereby enhancing the apoptosis of tumor cells by ABT199. This dual-drug-loaded implant system, combining efficient chemotherapy and anti-drug resistance, offers a prospective strategy for the potent inhibition of postoperative tumor recurrence.
Objectives
Autoantibodies against MDA5 serve as a biomarker for dermatomyositis (DM) and a risk factor for interstitial lung disease (ILD). MDA5 is a protein responsible for sensing RNA virus infection and activating signalling pathways against it. However, little is known about antigen epitopes on MDA5 autoantibodies. We aimed to determine the interaction of the MDA5 autoantibody-antigen epitope.
Methods
Cell-based assays (CBAs), immunoprecipitation-immunoblot assays, and various immunoblotting techniques were used in the study.
Results
We demonstrate that DM patient autoantibodies recognize MDA5 epitopes in a native conformation-dependent manner. Furthermore, we identified the central helicase domain formed by Hel1, Hel2i, Hel2, and pincer (3Hel) as the major epitopes. As proof of principle, the purified 3Hel efficiently absorbed MDA5 autoantibodies from patient sera through immunoprecipitation-immunoblot assay.
Conclusion
Our study uncovers the nature of antigen epitopes on MDA5 and provides guidance for diagnosis and targeted therapeutic approach development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.