The energy storage performance of antiferroelectric ceramic capacitors has always gain much attention. Hysteresis, transition field, and polarization intensity are crucial factors influencing energy storage performance. A-site doped small radius ions have been shown in numerous investigations to enhance the switching field, minimize hysteresis, but decrease maximum polarization intensity. How to maintain the high polarization while optimizing other parameters is a great challenge, and this problem has received scant attention in the research literature to date. In this work, Pb 1-x Sr x (Zr 0.54 Sn 0.46 ) 0.975 Nb 0.02 O 3 (x = 0, 0.02, 0.06, 0.08, 0.1, 0.12, 0.14, 0.16, 0.20) antiferroelectric ceramics show high polarization stability. When the Sr 2+ content is within 12 mol%, the saturation polarization intensity always remains at a large value (> 44μC/cm 2 ), and the rate of change is as low as 6%. Pb 0.92 Sr 0.08 (Zr 0.54 Sn 0.46 ) 0.975 Nb 0.02 O 3 also displays great polarization temperature stability with a minimal change rate of 8.5% in a wide temperature range from -55 to 85 • C. Additionally, this ceramic also has a superior energy storage performance that the recoverable energy density and energy storage efficiency and 8.95 J/cm 3 and 80.4%, respectively. This work paves the way for practical simultaneous polarization and other parameter optimization.
(Pb, La)(Zr, Ti)O3 antiferroelectric (AFE) materials are promising materials due to their energy‐storage density higher than 10 J cm−3, but their low energy‐storage efficiency and poor temperature stability limit their application. In this paper, the (1 − x)(Pb0.9175La0.055)(Zr0.975Ti0.025)O3–xPb(Yb1/2Nb1/2)O3 (PLZTYN100x) AFE ceramics were prepared via two‐step sintering method and investigated thoroughly. With the doping of Yb3+ and Nb5+, the phase structure transforms from the orthorhombic phase (AFEO) to the coexistence of the orthorhombic‐and‐tetragonal phases. This structure reduces the free energy difference between the AFE and ferroelectric phases and reduces the fluctuation of energy with temperature, improving the energy storage efficiency and temperature stability. When the x = 0.05 (PLZTYN5), the AFE ceramic exhibits excellent temperature stability and ultrahigh energy storage performance, whose recoverable energy density (Wrec) is 6.8–8.2 J cm−3 at 30 kV mm−1 in the temperature range from −55 to 75°C, and efficiency (ƞ) is 78%–86.7%. In addition, the change of Wrec is less than 15%, exceeding the performance of most AFE ceramics. The results demonstrate that the PLZTYN5 ceramic has great potential in pulse power capacitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.