We reported that Cullin4B-Ring E3 ligase complex (CRL4B) is physically associated with Polycomb-repressive complex 2 (PRC2). We showed that CRL4B possesses an intrinsic transcription repressive activity by promoting H2AK119 monoubiquitination. Ablation of Cul4b or depletion of CUL4B, the main component of CRL4B, resulted in loss of not only H2AK119 monoubiquitination but also H3K27 trimethylation, leading to derepression of target genes that are critically involved in cell growth and migration. We demonstrated that CUL4B promotes cell proliferation, invasion, and tumorigenesis in vitro and in vivo and found that its expression is markedly upregulated in various human cancers. Our data indicate that CUL4B promotes tumorigenesis, supporting the pursuit of CUL4B as a target for cancer therapy.
We reevaluated a previously reported family with an X-linked mental retardation syndrome and attempted to identify the underlying genetic defect. Screening of candidate genes in a 10-Mb region on Xq25 implicated CUL4B as the causative gene. CUL4B encodes a scaffold protein that organizes a cullin-RING (really interesting new gene) ubiquitin ligase (E3) complex in ubiquitylation. A base substitution, c.1564C-->T, converted a codon for arginine into a premature termination codon, p.R388X, and rendered the truncated peptide completely devoid of the C-terminal catalytic domain. The nonsense mutation also results in nonsense-mediated mRNA decay in patients. In peripheral leukocytes of obligate carriers, a strong selection against cells expressing the mutant allele results in an extremely skewed X-chromosome inactivation pattern. Our findings point to the functional significance of CUL4B in cognition and in other aspects of human development.
CUL4A and CUL4B, which are derived from the same ancestor, CUL4, encode scaffold proteins that organize cullin-RING ubiquitin ligase (E3) complexes. Recent genetic studies have shown that germ line mutation in CUL4B can cause mental retardation, short stature, and other abnormalities in humans. CUL4A was observed to be overexpressed in breast and hepatocellular cancers, although no germ line mutation in human CUL4A has been reported. Although CUL4A has been known to be involved in a number of cellular processes, including DNA repair and cell cycle regulation, little is known about whether CUL4B has similar functions. In this report, we tested the functional importance of CUL4B in cell proliferation and characterized the nuclear localization signal (NLS) that is essential for its function. We found that RNA interference silencing of CUL4B led to an inhibition of cell proliferation and a prolonged S phase, due to the overaccumulation of cyclin E, a substrate targeted by CUL4B for ubiquitination. We showed that, unlike CUL4A and other cullins that carry their NLS in their C termini, NLS in CUL4B is located in its N terminus, between amino acid 37 and 40, KKRK. This NLS could bind to importin ␣1, ␣3, and ␣5. NLS-deleted CUL4B was distributed in cytoplasm and failed to promote cell proliferation. Therefore, the nuclear localization of CUL4B mediated by NLS is critical for its normal function in cell proliferation.Cullins function as a "scaffold" in cullin-RING-based E3 ubiquitin ligases (CRLs).3 CRLs constitute a major subclass of RING finger E3s that regulate diverse cellular processes, including cell cycle progression, transcription, signal transduction, and development (1, 2). Cullins are evolutionarily conserved from yeast to mammals. Although sequence homology spans the entire protein, the C terminus, characterized by the ϳ200-amino acid cullin homology domain, is most conserved. Humans encode seven cullin members, CUL1, CUL2, CUL3, CUL4A, CUL4B, CUL5, and CUL7 (2). CUL4A and CUL4B are derived from one ancestor, CUL4, which exists in Schizosaccharomyces pombe (Pcu4), Xenopus laevis, Caenorhabditis elegans, Drosophila melanogaster, and Arabidopsis thaliana but is absent in Saccharomyces cerevisiae. CUL4A and CUL4B also exist in other higher organisms, including zebrafish and the mouse (3). The protein sequences between human CUL4A and CUL4B are 83% identical, with CUL4B having a unique N terminus of 149 amino acids (supplemental Fig. S1). CUL4A CRL complexes were shown to contain Rbx1 and the adaptor protein DDB1. DDB1 interacts with WD-40 repeat motif-containing proteins that determine the substrate specificity of the CUL4A ubiquitin ligase complex (3-7). Loss of Cul4 in Drosophila cells leads to G 1 arrest that is associated with an increase in the cyclin-dependent kinases (CDK) inhibitor Dacapo (8). Recent genetic studies have shown that mutations in CUL4B gene can cause an X-linked mental retardation syndrome (9, 10). However, no germ line mutation in human CUL4A has been reported, although overexpression of ...
BackgroundMicronuclei (MN) in mammalian cells serve as a reliable biomarker of genomic instability and genotoxic exposure. Elevation of MN is commonly observed in cells bearing intrinsic genomic instability and in normal cells exposed to genotoxic agents. DNA double-strand breaks are marked by phosphorylation of H2AX at serine 139 (γ-H2AX). One subclass of MN contains massive and uniform γ-H2AX signals. This study tested whether this subclass of MN can be induced by replication stress.Principal FindingsWe observed that a large proportion of MN, from 20% to nearly 50%, showed uniform staining by antibodies against γ-H2AX, a marker of DNA double-strand breaks (DSBs). Such micronuclei were designated as MN-γ–H2AX (+). We showed that such MN can be induced by chemicals that are known to cause DNA replication stress and S phase arrest. Hydroxyurea, aphidicolin and thymidine could all significantly induce MN-γ–H2AX (+), which were formed during S phase and appeared to be derived from aggregation of DSBs. MN-γ–H2AX (−), MN that were devoid of uniform γ-H2AX signals, were induced to a lesser extent in terms of fold change. Paclitaxel, which inhibits the disassembly of microtubules, only induced MN-γ–H2AX (−). The frequency of MN-γ–H2AX (+), but not that of MN-γ–H2AX (−), was also significantly increased in cells that experience S phase prolongation due to depletion of cell cycle regulator CUL4B. Depletion of replication protein A1 (RPA1) by RNA interference resulted in an elevation of both MN-γ–H2AX (+) and MN-γ–H2AX (−).Conclusions/SignificanceA subclass of MN, MN-γ–H2AX (+), can be preferentially induced by replication stress. Classification of MN according to their γ-H2AX status may provide a more refined evaluation of intrinsic genomic instabilities and the various environmental genotoxicants.
Cullin-RING ligases (CRLs) complexes participate in the regulation of diverse cellular processes, including cell cycle progression, transcription, signal transduction and development. Serving as the scaffold protein, cullins are crucial for the assembly of ligase complexes, which recognize and target various substrates for proteosomal degradation. Mutations in human CUL4B, one of the eight members in cullin family, are one of the major causes of X-linked mental retardation. We here report the generation and characterization of Cul4b knockout mice, in which exons 3 to 5 were deleted. In contrast to the survival to adulthood of human hemizygous males with CUL4B null mutation, Cul4b null mouse embryos show severe developmental arrest and usually die before embryonic day 9.5 (E9.5). Accumulation of cyclin E, a CRL (CUL4B) substrate, was observed in Cul4b null embryos. Cul4b heterozygotes were recovered at a reduced ratio and exhibited a severe developmental delay. The placentas in Cul4b heterozygotes were disorganized and were impaired in vascularization, which may contribute to the developmental delay. As in human CUL4B heterozygotes, Cul4b null cells were selected against in Cul4b heterozygotes, leading to various degrees of skewed X-inactivation in different tissues. Together, our results showed that CUL4B is indispensable for embryonic development in the mouse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.