Design intelligence is an important branch of artificial intelligence (AI), focusing on the intelligent models and algorithms in creativity and design. In the context of AI 2.0, studies on design intelligence have developed rapidly. We summarize mainly the current emerging framework of design intelligence and review the state-of-the-art techniques of related topics, including user needs analysis, ideation, content generation, and design evaluation. Specifically, the models and methods of intelligence-generated content are reviewed in detail. Finally, we discuss some open problems and challenges for future research in design intelligence.
Learning the disentangled representation of interpretable generative factors of data is one of the foundations to allow artificial intelligence to think like people. In this paper, we propose the analogical training strategy for the unsupervised disentangled representation learning in generative models. The analogy is one of the typical cognitive processes, and our proposed strategy is based on the observation that sample pairs in which one is different from the other in one specific generative factor show the same analogical relation. Thus, the generator is trained to generate sample pairs from which a designed classifier can identify the underlying analogical relation. In addition, we propose a disentanglement metric called the subspace score, which is inspired by subspace learning methods and does not require supervised information. Experiments show that our proposed training strategy allows the generative models to find the disentangled factors, and that our methods can give competitive performances as compared with the state-of-the-art methods.
Text effect transfer aims at learning the mapping between text visual effects while maintaining the text content. While remarkably successful, existing methods have limited robustness in font transfer and weak generalization ability to unseen effects. To address these problems, we propose FET-GAN, a novel end-to-end framework to implement visual effects transfer with font variation among multiple text effects domains. Our model achieves remarkable results both on arbitrary effect transfer between texts and effect translation from text to graphic objects. By a few-shot fine-tuning strategy, FET-GAN can generalize the transfer of the pre-trained model to the new effect. Through extensive experimental validation and comparison, our model advances the state-of-the-art in the text effect transfer task. Besides, we have collected a font dataset including 100 fonts of more than 800 Chinese and English characters. Based on this dataset, we demonstrated the generalization ability of our model by the application that complements the font library automatically by few-shot samples. This application is significant in reducing the labor cost for the font designer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.