We present a scalable, cost-effective closed-loop regeneration process of spent LiFePO4, including homogenization, spray drying and sintering. The regenerated LiFePO4 exhibits excellent electrochemical properties.
In this study, we found that glucose enhance electrochemiluminescence (ECL) intensity of both Au nanoclusters (Au NCs) and carbon quantum dots (CQDs) with K2S2O8 as the co‐reactants. The enhancing effects by Au NCs and CQDs were overlapped, enabling the detection of glucose. The increased ECL intensity of glucose was linear with the logarithm of concentrations of glucose in the range of 50 μM–3.0 mM, and the limit of detection is 20 μM. Anti‐interruption ability was achieved, and ascorbic acid, urea, and uric acid had little influence to glucose detection. This method realized the direct detection of glucose by enhancing ECL of Au NCs and CQDs, which was fast and economic, possessing potential applications for glucose detection in human serum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.