Vibrating structures are often mounted on or located near a passive plane surface with finite acoustic impedance, and hence the acoustic pressures measured in a half-space bounded by the surface consist of both the direct radiation from the structure and the reflection from the boundary surface. In order to visualize the direct radiation from the source into free space, a reconstruction method based on expansion in half-space spherical wave functions is proposed. First, the series of half-space spherical wave functions is derived based on the analytical solution of the sound field due to a multipole source located near an impedance plane. Then the sound field in the half-space is approximated by the superposition of a finite number of half-space expansion terms. The expansion coefficients are determined by solving an overdetermined linear system of equations obtained by matching this assumed solution to the total acoustic pressures in the half-space. The free-space radiation can finally be reconstructed via multiplying the free-space spherical wave functions by the corresponding coefficients. Numerical simulation examples of a vibrating sphere and a vibrating baffled plate are demonstrated. The effects of specific acoustic impedance of the boundary and the locations of the measurement points on the accuracy of reconstruction are examined.
A nonreflective airborne discontinuity is created in a one-dimensional rigid-walled duct when the mode complexity introduced by a nonresonant side branch reaches a maximum, so that a sound wave can be spatially separated into physical regions of traveling and standing waves. The nonresonance of the side branch is demonstrated, the mode complexity is quantified, and a computational method to optimize side-branch parameters to maximize mode complexity in the duct in the presence of three-dimensional effects is presented. The optimal side-branch parameters that maximize the mode complexity and thus minimize reflection are found using finite element analysis and a derivative-free optimization routine. Sensitivity of mode complexity near the optimum with respect to side-branch parameters is then examined. The results show reflection from the impedance discontinuity in the duct can be reduced nearly to zero, providing a practical means of achieving a nonreflective discontinuity for a plane wave propagating in a duct of finite length.
This paper presents a study of intentionally induced acoustic mode complexity in rigid-walled ducts of separable geometry and with uniform mean flow. An intermediately located perforated plate conceptualized as an impedance discontinuity is employed to maximize the acoustic mode complexity, in turn producing a unidirectional traveling wave from the source to the impedance discontinuity. The impedance of the perforated plate for realization of a unidirectional traveling wave is derived analytically and is found to be a function of the modal wavenumbers, the Mach number of the mean flow, the position of the perforated plate, and the termination impedance. The conditions derived analytically are verified computationally by finite element analysis. A measure of acoustic mode complexity is defined and also evaluated from the finite element analysis. It is found that the realization of a unidirectional traveling wave is robust at low Mach number mean flows, except at the occurrence of resonances. The method presented in this work provides a strategy to control the transmission of acoustic energy in rigid-walled ducts of separable geometry in the presence of uniform mean flow.
In this paper, we study the phenomenon of separation of traveling and standing waves in a one-dimensional rigid-walled circular duct. The underlying mechanism for separation, mode complexity, is linear and introduced here by a damped side branch representing an impedance discontinuity. The left end of the duct is driven at a single frequency by a harmonic acoustic source, and the right end is a rigid termination. The position and impedance of the side branch are independent parameters in the analysis. Sufficient conditions for acoustic wave separation in the duct are derived analytically and employed in a three-dimensional finite element analysis to verify the theoretical result. A physical experiment, consisting of a circular duct with a damped side branch, was constructed based on analytical predictions, the physical parameters were measured or identified, and its performance was documented. These experimental parameters were employed in a second three-dimensional finite element analysis to obtain a direct comparison with experimental results. The comparison reveals the extent to which higher-order (unmodeled) effects degrade the separation phenomenon. It is demonstrated that an intermediate damped side branch used as a nonresonant device can be predictively designed to achieve nearly ideal separation of traveling and standing waves in a rigid-walled circular duct in order to direct and control acoustic energy transmission through the duct system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.