This paper studies an output-based adaptive fault-tolerant control problem for nonlinear systems with nonstrict-feedback form. Neural networks are utilized to identify the unknown nonlinear characteristics in the system. An observer and a general fault model are constructed to estimate the unavailable states and describe the fault, respectively. Adaptive parameters are constructed to overcome the difficulties in the design process for nonstrict-feedback systems. Meanwhile, dynamic surface control technique is introduced to avoid the problem of "explosion of complexity". Furthermore, based on adaptive backstepping control method, an output-based adaptive neural tracking control strategy is developed for the considered system against actuator fault, which can ensure that all the signals in the resulting closed-loop system are bounded, and the system output signal can be regulated to follow the response of the given reference signal with a small error. Finally, the simulation results are provided to validate the effectiveness of the control strategy proposed in this paper.
Communication efficiency is a major bottleneck in the applications of distributed networks. To address the problem, the problem of quantized distributed optimization has attracted a lot of attention. However, most of the existing quantized distributed optimization algorithms can only converge sublinearly. To achieve linear convergence, this paper proposes a novel quantized distributed gradient tracking algorithm (Q-DGT) to minimize a finite sum of local objective functions over directed networks. Moreover, we explicitly derive the update rule for the number of quantization levels, and prove that Q-DGT can converge linearly even when the exchanged variables are respectively one bit. Numerical results also confirm the efficiency of the proposed algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.