In this work, we fixed the hard segment content (Ch%) and synthesized thermoplastic polyurethane (TPU) elastomers with one‐soft segment (HTPB‐PU, PTMG‐PU, and PCL‐PU) and bi‐soft segment (PTMG‐HPU and PCL‐HPU), using 4,4′‐diphenylmethane diisocyanate, 1,4‐butanediol, and different oligomer diols as raw materials. This work was used to explore the impact of two polar diols (polytetrahydrofuran diol [PTMG]; polycaprolactone diol [PCL]) of the hydroxy‐terminated polybutadiene (HTPB)‐based TPU on the microstructure and macroscopic properties. Using Fourier transform infrared spectroscopy, X‐ray diffraction, and differential scanning calorimetry to characterize TPU, the results showed that the introduction of PCL was better than PTMG in promoting microphase mixing and crystallization, and reducing microphase separation. This result was closely related because the carbonyl group in PCL was stronger than the ether bond in PTMG in forming hydrogen bonds with ─NH bond. Through mechanical test and isopropyl alcohol (IPA) resistance test, the results showed that HTPB‐based TPU with PCL (PCL‐HPU) significantly improved tensile strength and elongation at break, and only a small reduction of Young's modulus was observed. PCL‐HPU had the best retention of the IPA resistance of HTPB‐based TPU.
A ternary composite system consisting of natural rubber (NR), porous reduced graphene oxide (rPGO), and molybdenum disulfide (MoS 2 ) was introduced for applying in the dielectric field, of which rPGO and MoS 2 hybrid conductive filler (rPGM) was prepared by an effective and environmentally friendly method-microwave reduction. And the well-dispersed NR composites (NGM) were made by the latex co-precipitation method. Due to the large specific surface area of rPGM itself and the synergistic dispersion of rPGO and MoS 2 , it formed many stable interface structures with the NR matrix, which not only made the blend exhibit high elasticity and withstood large deformation as NR but also greatly improved the dielectric, mechanical and thermal stability of the NR matrix. Compared with neat NR, the dielectric constant of nanocomposite increased by 11 times in the presence of rPGM conductive filler, and the leakage current generated by direct contact of fillers was reduced due to the attachment of MoS 2 to the surface of rPGO; when 2% rPGM was added, the NR exhibited the highest tensile strength (21.3 MPa), elongation at break (495%), and abrasion resistance (0.165 cm À3 ); in addition, the thermal stability of the nanocomposite was also improved. These phenomena indicate that rPGM had great potential in conductive fillers and provided a reliable way for NR applications in the field of dielectric elastomers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.