Recently, owing to the high energy density and excellent security, wearable Zn−air batteries (ZABs) have been known as one of the most prominent wearable energy storage devices. However, sluggish oxygen reaction kinetics of oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) in the air-breathe cathode seriously has limited further practical applications. In this work, we synthesize a NiCo 2 O 4 nanocrystal/ MXene hybrid with strong Ni/Co−F bonds. The prepared MXene-based hybrid composites show remarkable ORR and OER electrocatalytic activity, which results in the fabricated solid-state ZAB device to achieve an open-circuit voltage of 1.40 V, peak power density of 55.1 mW cm −2 , and energy efficiency of 66.1% at 1.0 mA cm −2 ; to the best of our knowledge, this is the record performance among all reported flexible ZABs with MXene-based air cathodes and comparable with some noble metal catalysts. Moreover, even after cutting and suturing, our flexible solid-state ZAB devices are tailorable with high rate of performance.
To meet the increasing requirement of flexible energy storage devices, it is critical to develop an electrode with commercial-level mass loading of active material for supercapacitors. Herein, we fabricated a...
Neutral Zn-air batteries (ZABs) have attracted much attention due to the enhanced lifespan and stability. However, their development is suppressed by the poor catalytic properties of the air-electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Hence, the exploration of highly efficient electrocatalysts for neutral ZABs is critical. Herein, we designed an economical heterostructure of Pt nanoparticle-modified Zn nanoplates (Pt/Zn NPs). Compared with commercial Pt/C electrocatalyst, our Pt/ Zn heterostructure exhibits comparable catalytic properties and ultrahigh stability in neutral media. The heterostructure can reduce the dosage of Pt and offer sufficient active sites, resulting in enhanced catalytic properties for ORR/OER in neutral media. When applied to neutral ZABs as air cathode, our heterostructure exhibits a high power density of 45 mW cm −2 and excellent stability of more than 850 cycles with negligible decay, making it the most efficient and robust one in neutral electrolyte. This approach opens a new avenue to strategically design catalysts with high activity for neutral ZABs, rendering them potential in portable and wearable electronic devices.
The rational design and development of the low-cost and effective electrocatalysts toward oxygen evolution reaction (OER) are essential in the storage and conversion of clean and renewable energy sources. Herein, a ternary copper-cobalt sulfide nanosheets electrocatalysts (denoted as CuCoS/CC) for electrochemical water oxidation has been synthesized on carbon cloth (CC) via the sulfuration of CuCo-based precursors. The obtained CuCoS/CC reveals excellent electrocatalytic performance toward OER in 1.0 M KOH. It exhibits a particularly low overpotential of 276 mV at current density of 10 mA cm−2, and a small Tafel slope (58 mV decade−1), which is superior to the current commercialized noble-metal electrocatalysts, such as IrO2. Benefiting from the synergistic effect of Cu and Co atoms and sulfidation, electrons transport and ions diffusion are significantly enhanced with the increase of active sites, thus the kinetic process of OER reaction is boosted. Our studies will serve as guidelines in the innovative design of non-noble metal electrocatalysts and their application in electrochemical water splitting
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.