In the face of a large amount of news text information, how to make a reasonable classification of news text is a hot issue of modern scholars. To solve the problem that only word co-occurrence was considered in the Text Graph Convolutional Network (Text-GCN) method to build a graph model, a news text classification algorithm which fuses themes and is based on Graph Convolution Network, is presented. Firstly, the LDA topic model is used to process the corpus to obtain the distribution of themes of the corpus. Secondly, a graph model is built to construct a global map by using the related topic words and their subject distribution in each article. Finally, the text graph is input into the Graph Convolution Network layers to compute the learning representation of combining feature in order to complete the text classification task. The experimental results show that this method can effectively realize the word level interaction of information in text. In the experiment on Chinese and English datasets, adding theme information improves the accuracy by 1% compared with the Text-GCN method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.