Aim and Objective: Mantle Cell Lymphoma (MCL) is typically an aggressive and rare disease with poor prognosis, therefore new effective therapeutics are urgently needed. Drug repurposing for cancer treatment is becoming increasingly more attractive as an alternative approach to discover clinically approved drugs that demonstrate antineoplastic effect. The objective of this study was to screen an approved drug library and identify candidate compounds with an antineoplastic effect in MCL cells using High-Throughput Screening (HTS) technique. Materials and Methods: Using the HTS technique, nearly 3,800 clinically approved drugs and drug candidates were screened in Jeko and Mino MCL cell lines. We also demonstrated the selectivity window of the candidate compounds in six normal cell lines. Further validations were performed in caspase-3/7 apoptosis assay and three-dimensional (3D) multicellular aggregates model using Z138 cell line. Results: We identified 98 compounds showing >50% inhibition in either MCL cell line screened, they were distributed across eight unique therapeutic categories and have different mechanisms of action (MOA). We selected alisertib, carfilzomib, pracinostat and YM155 for further validation based on their antiproliferative activity in two MCL cell lines, selectivity to normal cell lines, and drug developing stages in terms of clinical research. Alisertib and carfilzomib showed antiproliferative effect on MCL cell with EC50 = 6 nM and >100-fold selectivity to normal cell lines, especially for alisertib which demonstrated >1000-fold selectivity to 5 out of 6 normal cell lines. Pracinostat and YM155 had potency of 11 and 12 nM in MCL cell with >20-fold selectivity to normal cell lines. All four compounds had been tested in caspase-dependent apoptosis assay. We further validated and demonstrated their anti-MCL effect on cell proliferation and (3D) multicellular aggregates model using Z138 cell line. Conclusion: This is the first study to examine such a large library of clinically approved compounds for the identification of novel drug candidates for MCL treatment, the results could be rapidly translated into clinical practice in patients with MCL.
Our data provide further evidence of the heterogeneity of FLT3/ITDs among different subgroups in Chinese AML patients. ITDs varied widely, but hotspots were concentrated. These results also suggest that nextgeneration sequencing is a useful method for detection of FLT3/ITDs sequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.