A great abundance of rural houses lacking design guidance exists in the cold regions of China, often accompanied by huge energy loss. Particularly, a courtyard-style dwelling (CSD) has more complex and diverse building elements than a common house, rendering the design optimization extremely costly. Sensitivity analysis (SA) can screen the significant parameters of energy consumption for prediction and optimization. In this paper, (1) the design variables related to CSDs and their data details were extracted; (2) a ranking of parameters sensitive to energy demand was formulated; (3) an energy prediction model was trained and (4) dual-objective optimization was carried out. Using the survey data from 150 units in nine villages, 25 control variables were extracted for sequential global sensitivity analysis (GSA). Thus, the ranking of sensitivity parameters was formulated with the two-stage-and-three-sort GSA method. Furthermore, an energy prediction model was then trained with Gaussian Process Regression (GPR) and compared with the other four high-precision models. Based on the obtained prediction model, optimization was then carried out on energy and economic concerns. Consequently, a GSA-based workflow for CSD optimization was proposed to help architectural designers figure out the most efficient energy-saving parameter strategy.
Air-based BIPV/T is of significant research interest in reducing energy load and improving indoor comfort. As many factors related to meteorology, geometry and operation contribute to the thermal performance of BIPV/T, especially for one kind of hybrid air-based BIPV/T (HAB-BIPV/T), quantifying the effects of such uncertain parties is essential. In this paper, a numerical analysis was conducted regarding 13 parameters of one HAB-BIPV/T prototype. For each quantity of interest, the kernel density estimate was regarded as an approximation to the probability density function to assess uncertainty propagation. A sequential sensitivity analysis was used to quickly screen (by Morris) and exactly quantify (by Sobol’) the effects of significant variables. The surrogate model based on a back propagation neural network was employed to dramatically reduce the computational cost of Monte Carlo analysis. The results show that the uncertain inputs discussed can induce considerable fluctuations in the three quantities of interest. The most significant parameters on AUI include air inlet height, cavity thickness, air inlet velocity and number of air inlets. The outcomes of this study provide insights into the correlation between various factors and the thermal efficiency of the HAB-BIPV/T as a reference for similar design works.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.