Vanadium is a metal widely distributed in the environment. Although vanadate-containing compounds exert potent toxic effects on a wide variety of biological systems, the mechanisms controlling vanadate-induced adverse effects remain to be elucidated. The present study investigated the vanadate-induced p53 activation and involvement of reactive oxygen species (ROS) in p53 activation as well as the role of p53 in apoptosis induction by vanadate. Exposure of mouse epidermal JB6 cells to vanadate led to transactivation of p53 activity in a time-and dose-dependent manner. It also caused mitochondrial damage, apoptosis, and generated ROS.
Scavenging of vanadate-induced H 2 O 2 by N-acetyl-L-cysteine (a general antioxidant) or catalase (a specific H
Incubation of Cr(VI) with ascorbate generated Cr(V), Cr(IV) and ascorbate-derived carbon-centered alkyl radicals, as well as formyl radicals. H2O2 caused generation of hydroxyl radicals (OH) and much higher levels of Cr(V), showing that .OH can be generated via a Cr(IV)-mediated Fenton-like reaction (Cr(IV) + H2O2-->Cr(V) + .OH + OH-). 1,10-Phenanthroline and deferoxamine inhibited the formation of both .OH and Cr(V) from the reaction of Cr(VI) with ascorbate in the presence of H2O2. Electrophoretic assays showed that ascorbate-derived free radicals caused DNA double-strand breaks. .OH radicals generated by Cr(V)- and Cr(IV)-mediated Fenton-like reactions also caused DNA double-strand breaks. HPLC measurements showed that .OH radicals generated by Cr(IV) and Cr(V) from H2O2 caused 2'-deoxyguanine hydroxylation to form 8-hydroxy-2'-deoxyguanine.
Excessive production of reactive oxygen radicals by alveolar macrophages is proposed to play an important role in oxidative lung injury. A major product oxygen radical formation is the highly reactive hydroxyl radical (.OH) generated via a biologic Fenton reaction. In addition to its known ability to induce lipid peroxidation, recent studies have suggested that the .OH may exert its cytotoxic effect through the alteration of [Ca2+]i homeostasis. To test this potential mechanism as well as to investigate the relationship between .OH and Ca2+ overloading in cytotoxic injury, isolated rat alveolar macrophages were exposed to externally generated radical system, H2O2 (0.01 to 1 mM) and Fe2+ (1 mM) and their [Ca2+]i levels and cell injury were monitored using quantitative fluorescence microscopy with the aid of the specific Ca2+ indicator, Fura-2, and membrane integrity indicator, propidium iodide. Electron spin resonance measurements using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) confirmed the production of the .OH radical by this system. Upon the addition of the radicals, the macrophages displayed a rapid initial rise in [Ca2+]i which was followed by a slower but more pronounced [Ca2+]i elevation that reached a level 3 to 5 times higher than the basal level. This process preceded cell death as evident by nuclear propidium iodide fluorescence. Depletion of extracellular Ca2+ inhibited both the [Ca2+]i response and cell injury. Preincubation of the cells with the Ca2+ channel blocker verapamil or .OH radical scavenger mannitol similarly inhibited the [Ca2+]i rise and loss of viability. Firefly luciferase assay of cellular ATP content demonstrated that the alterations in [Ca2+]i following .OH treatment preceded the depletion of ATP.(ABSTRACT TRUNCATED AT 250 WORDS)
Tetrandrine is a benzylisoquinoline alkaloid that has been used in China as an antifibrotic drug to treat the lesions of silicosis. Its mechanism in the treatment of silicosis is unclear. Electron spin resonance (ESR) spin trapping was employed to investigate the antioxidant properties of tetrandrine. The spin trap used was 5,5-dimethyl-1-pyrroline N-oxide (DMPO). Tetrandine efficiently reacted with hydroxyl (.OH) radicals with a reaction rate of approximately 1.4 x 10(10) M-1 s-1. The .OH radicals were generated by the Fenton reaction [Fe(II) + H2O2) as well as by reaction of chromium(V) with H2O2. Similar results were obtained using .OH radicals generated by reaction of freshly fractured quartz particles with aqueous medium. Tetrandrine also scavenged superoxide (O2-) radicals produced from xanthine/xanthine oxidase. The effect of tetrandrine on lipid peroxidation induced by freshly fractured quartz particles was evaluated using linoleic acid as a model lipid. The results showed that tetrandrine caused a significant inhibition on freshly fractured quartz-induced lipid peroxidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.