A rapid, selective and sensitive high‐performance liquid chromatography–tandem mass spectrometry (HPLC‐MS/MS) method was developed to determine meloxicam in beagle dog plasma. Sample pretreatment involved a one‐step protein precipitation with methanol of 0.1 mL plasma. Analysis was performed on a Venusil ASB‐C18 column with mobile phase consisting of methanol–water (containing 0.1% formic acid) (75:25, v/v). The detection was performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring mode via electrospray ionization source. Each plasma sample was chromatographed within 4.1 min. The linear calibration curves for meloxicam was obtained in the concentration range of 10.3–4.12 × 103 ng/mL (r ≥ 0.99). The intra‐ and inter‐day precisions (relative standard deviation) were ≤ 15%, and accuracy (relative error) was within ±7.3%. The method herein described was fully validated and successfully applied to the pharmacokinetic study of meloxicam tablets in beagle dog.
A rapid, selective and sensitive ultra‐high‐performance liquid chromatography–tandem mass spectrometry method was developed to simultaneously determine oxybutynin and its active metabolite N‐desethyl oxybutynin in rat plasma. A 0.1 mL sample of plasma was extracted with n‐hexane. Chromatographic separation was performed on a UPLC BEH C18 column (2.1 × 100 mm i.d.,1.7 μm) with mobile phase of methanol–water (containing 2 mmol/L ammonium acetate and 0.1% formic acid; 90:10, v/v). The detection was performed in positive selected reaction monitoring mode. Each plasma sample was chromatographed within 3 min. The linear calibration curves were obtained in the concentration range of 0.0944–189 ng/mL (r ≥ 0.99) for oxybutynin and 0.226–18.0 ng/mL (r ≥ 0.99) for N‐desethyl oxybutynin. The intra‐ and inter‐day precision (relative standard deviation) values were not more than 14% and the accuracy (relative error) was within ±7.6%. The method described was superior to previous methods for the quantitation of oxybutynin with three product ions and was successfully applied to a pharmacokinetic study of oxybutynin and its active metabolite N‐desethyl oxybutynin in rat plasma after transdermal administration.
A rapid, selective and sensitive ultra-high-performance liquid chromatographytandem mass spectrometry (UHPLC-MS/MS) method was developed to detect meloxicam in human plasma. A triple quadrupole tandem mass spectrometer equipped with an electrospray ionization source was used in positive ion mode.Protein precipitation with acetonitrile was used for sample preparation. Meloxicam and 13 C 6 -meloxicam internal standard were analyzed on an Acquity CSH C 18 column with a mobile phase of acetonitrile and water in 0.1% formic acid using a gradient program for separation. The retention time of meloxicam was 1.1 min and the total run time was only 2.0 min. Detection was performed in multiple reaction monitoring mode using an electrospray ionization source with optimized mass spectrometry parameters. The calibration curves were linear in the range 10.0-3.00 Â 10 3 ng/ml (r ≥ 0.99). The within-run and between-run RSDs were ≤14.8%. The within-run and between-run REs ranged from À4.6 to 10.7%. There was no significant matrix effect, and the recovery rate was high. This method was fully validated, including reinjection reproducibility in human plasma. The method was applied to the pharmacokinetic study. All of the incurred sample reanalysis methods met the criteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.