A series of 7 cerium double-decker complexes with various tetrapyrrole ligands including porphyrinates, phthalocyaninates, and 2,3-naphthalocyaninates have been prepared by previously described methodologies and characterized with elemental analysis and a range of spectroscopic methods. The molecular structures of two heteroleptic [(na)phthalocyaninato](porphyrinato) complexes have also been determined by X-ray diffraction analysis which exhibit a slightly distorted square antiprismatic geometry with two domed ligands. Having a range of tetrapyrrole ligands with very different electronic properties, these compounds have been systematically investigated for the effects of ligands on the valence of the cerium center. On the basis of the spectroscopic (UV-vis, near-IR, IR, and Raman), electrochemical, and structural data of these compounds and compared with those of the other rare earth(III) counterparts reported earlier, it has been found that the cerium center adopts an intermediate valence in these complexes. It assumes a virtually trivalent state in cerium bis(tetra-tert-butylnaphthalocyaninate) as a result of the two electron rich naphthalocyaninato ligands, which facilitate the delocalization of electron from the ligands to the metal center. For the rest of the cerium double-deckers, the cerium center is predominantly tetravalent. The valences (3.59-3.68) have been quantified according to their L(III)-edge X-ray absorption near-edge structure (XANES) profiles.
A series of five novel sandwich-type mixed (phthalocyaninato)(porphyrinato) europium triple-decker complexes with different numbers of hydroxyl groups at the meso-substituted phenyl groups of porphyrin ligand 1-5 have been designed, synthesized, and characterized. Their self-assembly properties, in particular the effects of the number and positions of hydroxyl groups on the morphology of self-assembled nanostructures of these triple-decker complexes, have been comparatively and systematically studied. Competition and cooperation between the intermolecular pi-pi interaction and hydrogen bonding in the direction perpendicular to the pi-pi interaction direction for different compounds were revealed to result in nanostructures with a different morphology from nanoleafs for 1, nanoribbons for 2, nanosheets for 3, and curved nanosheets for 4 and to spherical shapes for 5. The IR and X-ray diffraction (XRD) results reveal that, in the nanostructures of triple-decker 2 as well as 3-5, a dimeric supramolecular structure was formed through an intermolecular hydrogen bond between two triple-decker molecules, which as the building block self-assembles into the target nanostructures. Electronic absorption spectroscopic results on the self-assembled nanostructures reveal the H-aggregate nature in the nanoleafs and nanoribbons formed from triple-deckers 1 and 2 due to the dominant pi-pi intermolecular interaction between triple-decker molecules, but the J-aggregate nature in the curved nanosheets and spherical shapes of 4 and 5 depending on the dominant hydrogen bonding interaction in cooperation with pi-pi interaction among the triple-decker molecules. Electronic absorption and XRD investigation clearly reveal the decrease in the pi-pi interaction and increase in the hydrogen bonding interaction among triple-decker molecules in the nanostructures along with the increase of hydroxyl number in the order of 1-5. The present result appears to represent the first effort toward realization of controlling and tuning the morphology of self-assembled nanostructures of sandwich tetrapyrrole rare earth complexes through molecular design and synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.