The CCAAT-binding factor is a conserved heteromeric transcription factor that binds to CCAAT box-containing upstream activation sites (UASs) within the promoters of numerous eukaryotic genes. The The transcriptional activation of gene expression is mediated by the binding of distinct regulatory factors to specific cis-acting DNA sequence elements, referred to as enhancers or upstream activation sites (UASs), located within the promoters of eukaryotic genes. Many of these transcription factors are composed of multiple polypeptides that interact in a specific manner to form an oligomeric complex that is capable of recognizing specific cisacting DNA sequence elements. Several families of hetero-oligomeric transcription factors have been identified in eukaryotes (McKnight et al. 1987;Olesen et al. 1987;
Asian cultivated rice consists of two subspecies: Oryza sativa subsp. indica and O. sativa subsp. japonica. Despite the fact that indica rice accounts for over 70% of total rice production worldwide and is genetically much more diverse, a high-quality reference genome for indica rice has yet to be published. We conducted map-based sequencing of two indica rice lines, Zhenshan 97 (ZS97) and Minghui 63 (MH63), which represent the two major varietal groups of the indica subspecies and are the parents of an elite Chinese hybrid. The genome sequences were assembled into 237 (ZS97) and 181 (MH63) contigs, with an accuracy >99.99%, and covered 90.6% and 93.2% of their estimated genome sizes. Comparative analyses of these two indica genomes uncovered surprising structural differences, especially with respect to inversions, translocations, presence/absence variations, and segmental duplications. Approximately 42% of nontransposable element related genes were identical between the two genomes. Transcriptome analysis of three tissues showed that 1,059-2,217 more genes were expressed in the hybrid than in the parents and that the expressed genes in the hybrid were much more diverse due to their divergence between the parental genomes. The public availability of two high-quality reference genomes for the indica subspecies of rice will have large-ranging implications for plant biology and crop genetic improvement.Oryza sativa | reference genomes | BAC-by-BAC strategy | transcriptome R ice is one of the most important food crops in the world and provides more than 20% of the caloric intake for one-half of the world's population. Asian cultivated rice can be divided into two subspecies-that is, Oryza sativa subsp. indica and O. sativa subsp. japonica-which are highly distinctive in geographical distribution, reproductively isolated, and have been shown to have extensive differentiation in genome structure and gene content (1). Indica rice accounts for more than 70% of world rice production (2) and is genetically much more diverse than japonica rice (3). Genomic studies have established that indica rice can be further subdivided into two major varietal groups, indica I and indica II, which have been independently bred and widely cultivated in China and Southeast Asia, respectively (4). Hybrids between these groups usually show strong heterosis, which provided the basis for the great success of hybrid rice in several countries, including China and the United States. For example, Zhenshan 97 (ZS97, indica I) and Minghui 63 (MH63, indica II) are the parents of the elite hybrid Shanyou 63 (SY63) (SI Appendix, Fig. S1 A and B), which exhibits superiority for a large array of agronomic traits including yield, resistance to multiple diseases, wide adaptability, and good eating quality, and thus has been the most widely cultivated hybrid in China over the past three decades (SI Appendix, Fig. S1C).Because of the importance of hybrid rice in helping to ensure a stable and secure food supply for generations, a series of attempts have been...
Rice Variation Map (RiceVarMap, http:/ricevarmap.ncpgr.cn) is a database of rice genomic variations. The database provides comprehensive information of 6 551 358 single nucleotide polymorphisms (SNPs) and 1 214 627 insertions/deletions (INDELs) identified from sequencing data of 1479 rice accessions. The SNP genotypes of all accessions were imputed and evaluated, resulting in an overall missing data rate of 0.42% and an estimated accuracy greater than 99%. The SNP/INDEL genotypes of all accessions are available for online query and download. Users can search SNPs/INDELs by identifiers of the SNPs/INDELs, genomic regions, gene identifiers and keywords of gene annotation. Allele frequencies within various subpopulations and the effects of the variation that may alter the protein sequence of a gene are also listed for each SNP/INDEL. The database also provides geographical details and phenotype images for various rice accessions. In particular, the database provides tools to construct haplotype networks and design PCR-primers by taking into account surrounding known genomic variations. These data and tools are highly useful for exploring genetic variations and evolution studies of rice and other species.
Rice (Oryza sativa) is an important dietary source of both essential micronutrients and toxic trace elements for humans. The genetic basis underlying the variations in the mineral composition, the ionome, in rice remains largely unknown. Here, we describe a comprehensive study of the genetic architecture of the variation in the rice ionome performed using genome-wide association studies (GWAS) of the concentrations of 17 mineral elements in rice grain from a diverse panel of 529 accessions, each genotyped at ;6.4 million single nucleotide polymorphism loci. We identified 72 loci associated with natural ionomic variations, 32 that are common across locations and 40 that are common within a single location. We identified candidate genes for 42 loci and provide evidence for the causal nature of three genes, the sodium transporter gene Os-HKT1;5 for sodium, Os-MOLYBDATE TRANSPORTER1;1 for molybdenum, and Grain number, plant height, and heading date7 for nitrogen. Comparison of GWAS data from rice versus Arabidopsis (Arabidopsis thaliana) also identified well-known as well as new candidates with potential for further characterization. Our study provides crucial insights into the genetic basis of ionomic variations in rice and serves as an important foundation for further studies on the genetic and molecular mechanisms controlling the rice ionome.
SummaryWe have previously reported that three distinct patterns of waxy (Wx) gene transcript accumulation were present in 31 rice cultivars. The cultivars with high amylose content (group I) contain a 2.3 kb mature Wx mRNA, cultivars with intermediate amylose content (group II) produce both a 3.3 kb Wx pre-mRNA, which contains intron 1, and the 2.3 kb Wx mature mRNA, and cultivars with no amylose (group III) accumulate only the 3.3 kb Wx pre-mRNA. Analyses of the cDNAs reveals that four splice donor sites and three splice acceptor sites in intron 1 give rise to six splicing patterns in 2.3 kb Wx mRNA of group II cultivars. In addition, aberrant intron 1 excision causes either deletion of 4 or 5 nucleotides, or addition of 7 and 13 nucleotides at the junction of exon 1 and exon 2 of the 2.3 kb mRNA. In contrast, only one normal splicing pattern (one splice donor site and one splice acceptor site) was found in the 2.3 kb mRNA of group I cultivars. Nucleotide sequences of the Wx intron 1 in group I and group II cultivars differ by 16 individual bases. We suggest that these deletions or additions contribute to inefficient splicing of intron 1 from the 3.3 kb Wx pre-mRNA, as well as an aberrant splicing of the Wx intron 1 to produce the 2.3 kb mRNA with a heterogeneous 5Ј untranslated region (5Ј-UTR). As a consequence, the total amount of translatable Wx mRNA, and therefore the Wx protein and amylose content, are reduced in the group II cultivars compared with the group I cultivars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.