A new single-aperture 3D particle-localization and tracking technique is presented that demonstrates an increase in depth range by more than an order of magnitude without compromising optical resolution and throughput. We exploit the extended depth range and depth-dependent translation of an Airy-beam PSF for 3D localization over an extended volume in a single snapshot. The technique is applicable to all bright-field and fluorescence modalities for particle localization and tracking, ranging from super-resolution microscopy through to the tracking of fluorescent beads and endogenous particles within cells. We demonstrate and validate its application to real-time 3D velocity imaging of fluid flow in capillaries using fluorescent tracer beads. An axial localization precision of 50 nm was obtained over a depth range of 120μm using a 0.4NA, 20× microscope objective. We believe this to be the highest ratio of axial range-to-precision reported to date.
The spatial resolution of conventional optical microscopy is limited by diffraction to transverse and axial resolutions of about 250 nm, but localization of point sources, such as single molecules or fluorescent beads, can be achieved with a precision of 10 nm or better in each direction. Traditional approaches to localization microscopy in two dimensions enable high precision only for a thin in-focus layer that is typically much less than the depth of a cell. This precludes, for example, super-resolution microscopy of extended three-dimensional biological structures or mapping of blood velocity throughout a useful depth of vasculature. Several techniques have been reported recently for localization microscopy in three dimensions over an extended depth range. We describe the principles of operation and typical applications of the most promising 3D localization microscopy techniques and provide a comparison of the attainable precision for each technique in terms of the Cramér-Rao lower bound for high-resolution imaging.
Experimental characterization of blood flow in living organisms is crucial for understanding the development and function of cardiovascular systems, but there has been no technique reported for snapshot imaging of thick samples in large volumes with high precision. We have combined computational microscopy and the diffraction-free, self-bending property of Airy-beams to track fluorescent beads with sub-micron precision through an extended axial range (up to 600 μm) within the flowing blood of 3 days post-fertilization (dpf) zebrafish embryos. The spatial trajectories of the tracer beads within flowing blood were recorded during transit through both cardinal and intersegmental vessels, and the trajectories were found to be consistent with the segmentation of the vasculature recorded using selective-plane illumination microscopy (SPIM). This method provides sufficiently precise spatial and temporal measurement of 3D blood flow that has the potential for directly probing key biomechanical quantities such as wall shear stress, as well as exploring the fluidic repercussions of cardiovascular diseases. Although we demonstrate the technique for blood flow, the ten-fold better enhancement in the depth range offers improvements in a wide range of applications of high-speed precision measurement of fluid flow, from microfluidics through measurement of cell dynamics to macroscopic aerosol characterizations.
We propose an analytical pupil phase function employing cropped secondary astigmatism for extended-depth nanoscale 3D-localization microscopy. The function provides high localization precision in all three dimensions, which can be maintained over extended axial ranges, customizable up to two orders of magnitude relative to the conventional, diffraction-limited imaging. This enables, for example, capturing nanoscale dynamics within a whole cell. The flexibility and simplicity in the implementation of the proposed phase function make its adoption in localizationbased microscopy attractive. We demonstrate and validate its application to real-time imaging of 3D fluid flow over a depth of 40 µm with a numerical aperture of 0.8.Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.